Suivre
Seonghwan Kim
Seonghwan Kim
Dept. Chemistry, KAIST
Adresse e-mail validée de kaist.ac.kr
Titre
Citée par
Citée par
Année
Diffusion-based generative AI for exploring transition states from 2D molecular graphs
S Kim, J Woo, WY Kim
Nature Communications 15 (1), 341, 2024
182024
Dynamic Precision Approach for Accelerating Large-Scale Eigenvalue Solvers in Electronic Structure Calculations on Graphics Processing Units
J Woo, S Kim, WY Kim
Journal of Chemical Theory and Computation 19 (5), 1457-1465, 2023
42023
GeoTMI: predicting quantum chemical property with easy-to-obtain geometry via positional denoising
H Kim, J Woo, S Kim, S Moon, JH Kim, WY Kim
Advances in Neural Information Processing Systems 36, 2024
32024
Discrete Diffusion Schr\" odinger Bridge Matching for Graph Transformation
JH Kim, S Kim, S Moon, H Kim, J Woo, WY Kim
arXiv preprint arXiv:2410.01500, 2024
22024
Gaussian-Approximated Poisson Preconditioner for Iterative Diagonalization in Real-Space Density Functional Theory
J Woo, S Kim, WY Kim
The Journal of Physical Chemistry A 127 (17), 3883-3893, 2023
22023
Collective Variable Free Transition Path Sampling with Generative Flow Network
K Seong, S Park, S Kim, WY Kim, S Ahn
arXiv preprint arXiv:2405.19961, 2024
12024
Riemannian Denoising Score Matching for Molecular Structure Optimization with Accurate Energy
J Woo, S Kim, JH Kim, WY Kim
arXiv preprint arXiv:2411.19769, 2024
2024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–7