Suivre
Zongren Zou
Titre
Citée par
Citée par
Année
Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons
AF Psaros, X Meng, Z Zou, L Guo, GE Karniadakis
Journal of Computational Physics 477, 111902, 2023
2832023
Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems
K Linka, A Schäfer, X Meng, Z Zou, GE Karniadakis, E Kuhl
Computer Methods in Applied Mechanics and Engineering 402, 115346, 2022
1232022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Z Zou, X Meng, AF Psaros, GE Karniadakis
SIAM Review 66 (1), 161-190, 2024
552024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K Shukla*, JD Toscano*, Z Wang*, Z Zou*, GE Karniadakis
arXiv preprint arXiv:2406.02917, 2024
512024
Discovering a reaction–diffusion model for Alzheimer’s disease by combining PINNs with symbolic regression
Z Zhang, Z Zou, E Kuhl, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 419, 116647, 2024
382024
L-HYDRA: Multi-head physics-informed neural networks
Z Zou, GE Karniadakis
arXiv preprint arXiv:2301.02152, 2023
382023
Correcting model misspecification in physics-informed neural networks (PINNs)
Z Zou, X Meng, GE Karniadakis
Journal of Computational Physics 505, 112918, 2024
342024
Uncertainty quantification for noisy inputs–outputs in physics-informed neural networks and neural operators
Z Zou, X Meng, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 433, 117479, 2025
202025
From pinns to pikans: Recent advances in physics-informed machine learning
JD Toscano, V Oommen, AJ Varghese, Z Zou, NA Daryakenari, C Wu, ...
arXiv preprint arXiv:2410.13228, 2024
122024
Leveraging multitime Hamilton–Jacobi PDEs for certain scientific machine learning problems
P Chen*, T Meng*, Z Zou*, J Darbon, GE Karniadakis
SIAM Journal on Scientific Computing 46 (2), C216-C248, 2024
122024
A generative modeling framework for inferring families of biomechanical constitutive laws in data-sparse regimes
M Yin*, Z Zou*, E Zhang, C Cavinato, JD Humphrey, GE Karniadakis
Journal of the Mechanics and Physics of Solids 181, 105424, 2023
112023
Leveraging viscous Hamilton–Jacobi PDEs for uncertainty quantification in scientific machine learning
Z Zou, T Meng, P Chen, J Darbon, GE Karniadakis
SIAM/ASA Journal on Uncertainty Quantification 12 (4), 1165-1191, 2024
72024
Leveraging Hamilton-Jacobi PDEs with time-dependent Hamiltonians for continual scientific machine learning
P Chen*, T Meng*, Z Zou*, J Darbon, GE Karniadakis
6th Annual Learning for Dynamics & Control Conference, 1-12, 2024
72024
NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
K Shukla*, Z Zou*, CH Chan, A Pandey, Z Wang, GE Karniadakis
Computer Methods in Applied Mechanics and Engineering 433, 117498, 2025
52025
Large scale scattering using fast solvers based on neural operators
Z Zou, A Kahana, E Zhang, E Turkel, R Ranade, J Pathak, GE Karniadakis
arXiv preprint arXiv:2405.12380, 2024
32024
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
T Meng*, Z Zou*, J Darbon, GE Karniadakis
arXiv preprint arXiv:2409.09614, 2024
12024
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
M De Florio, Z Zou, DE Schiavazzi, GE Karniadakis
ArXiv, arXiv: 2408.07201 v1, 2024
12024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–17