Suivre
Benjamin Midtvedt
Benjamin Midtvedt
Affiliation inconnue
Adresse e-mail validée de physics.gu.se
Titre
Citée par
Citée par
Année
Quantitative digital microscopy with deep learning
B Midtvedt, S Helgadottir, A Argun, J Pineda, D Midtvedt, G Volpe
Applied Physics Reviews 8 (1), 2021
1232021
Geometric deep learning reveals the spatiotemporal features of microscopic motion
J Pineda, B Midtvedt, H Bachimanchi, S Noé, D Midtvedt, G Volpe, ...
Nature Machine Intelligence 5 (1), 71-82, 2023
532023
Fast and accurate nanoparticle characterization using deep-learning-enhanced off-axis holography
B Midtvedt, E Olsén, F Eklund, F Höök, CB Adiels, G Volpe, D Midtvedt
ACS nano 15 (2), 2240-2250, 2021
492021
Size and refractive index determination of subwavelength particles and air bubbles by holographic nanoparticle tracking analysis
D Midtvedt, F Eklund, E Olsén, B Midtvedt, J Swenson, F Höök
Analytical chemistry 92 (2), 1908-1915, 2019
482019
Single-shot self-supervised object detection in microscopy
B Midtvedt, J Pineda, F Skärberg, E Olsén, H Bachimanchi, E Wesén, ...
Nature communications 13 (1), 7492, 2022
462022
Extracting quantitative biological information from bright-field cell images using deep learning
S Helgadottir, B Midtvedt, J Pineda, A Sabirsh, C B Adiels, S Romeo, ...
Biophysics Reviews 2 (3), 2021
392021
Active droploids
J Grauer, F Schmidt, J Pineda, B Midtvedt, H Löwen, G Volpe, B Liebchen
Nature Communications 12 (1), 6005, 2021
262021
Simulation of Complex Systems
A Argun, A Callegari, G Volpe
IOP Publishing, 2021
252021
Roadmap on deep learning for microscopy
G Volpe, C Wählby, L Tian, M Hecht, A Yakimovich, K Monakhova, ...
ArXiv, 2023
212023
Quantitative evaluation of methods to analyze motion changes in single-particle experiments
G Muñoz-Gil, H Bachimanchi, J Pineda, B Midtvedt, M Lewenstein, ...
arXiv preprint arXiv:2311.18100, 2023
112023
Deeptrack 2.0
B Midtvedt, S Helgadottir, A Argun, J Pineda, D Midtvedt, G Volpe
102020
Quantitative digital microscopy with deep learning
B Midtvedt, S Helgadottir, A Argun, J Pineda, D Midtvedt, G Volpe
arXiv preprint arXiv:2010.08260, 2020
92020
Microplankton life histories revealed by holographic microscopy and deep learning
H Bachimanchi, B Midtvedt, D Midtvedt, E Selander, G Volpe
Elife 11, e79760, 2022
72022
Nanoalignment by critical Casimir torques
G Wang, P Nowakowski, N Farahmand Bafi, B Midtvedt, F Schmidt, ...
Nature Communications 15 (1), 5086, 2024
52024
Label-free optical quantification of material composition of suspended virus-gold nanoparticle complexes
E Olsén, B Midtvedt, A González, F Eklund, K Ranoszek-Soliwoda, ...
arXiv preprint arXiv:2304.07636, 2023
42023
Single-shot self-supervised particle tracking
B Midtvedt, J Pineda, F Skärberg, E Olsén, H Bachimanchi, E Wesén, ...
arXiv preprint arXiv:2202.13546, 2022
42022
Holographic characterisation of subwavelength particles enhanced by deep learning
B Midtvedt, E Olsén, F Eklund, F Höök, CB Adiels, G Volpe, D Midtvedt
arXiv preprint arXiv:2006.11154, 2020
32020
Cross-modality transformations in biological microscopy enabled by deep learning
D Hassan, J Domínguez, B Midtvedt, H Klein Moberg, J Pineda, ...
Advanced Photonics 6 (6), 064001-064001, 2024
12024
Dynamic live/apoptotic cell assay using phase-contrast imaging and deep learning
Z Korczak, J Pineda, S Helgadottir, B Midtvedt, M Goksör, G Volpe, ...
bioRxiv, 2022.07. 18.500422, 2022
12022
Self-assembly of defined core–shell ellipsoidal particles at liquid interfaces
J Eatson, S Bauernfeind, B Midtvedt, A Ciarlo, J Menath, G Pesce, ...
Journal of Colloid and Interface Science 683, 435-446, 2025
2025
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20