Neural codes for image retrieval A Babenko, A Slesarev, A Chigorin, V Lempitsky Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014 | 1555 | 2014 |
Aggregating local deep features for image retrieval A Babenko, V Lempitsky Proceedings of the IEEE international conference on computer vision, 1269-1277, 2015 | 1200* | 2015 |
Revisiting deep learning models for tabular data Y Gorishniy, I Rubachev, V Khrulkov, A Babenko Advances in Neural Information Processing Systems 34, 18932-18943, 2021 | 826 | 2021 |
Label-efficient semantic segmentation with diffusion models D Baranchuk, I Rubachev, A Voynov, V Khrulkov, A Babenko ICLR'2022, 2022 | 563 | 2022 |
The inverted multi-index A Babenko, V Lempitsky IEEE transactions on pattern analysis and machine intelligence 37 (6), 1247-1260, 2014 | 542 | 2014 |
Unsupervised discovery of interpretable directions in the gan latent space A Voynov, A Babenko International conference on machine learning, 9786-9796, 2020 | 465 | 2020 |
Neural oblivious decision ensembles for deep learning on tabular data S Popov, S Morozov, A Babenko ICLR'2020, 2020 | 360 | 2020 |
Additive quantization for extreme vector compression A Babenko, V Lempitsky Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014 | 319 | 2014 |
Efficient indexing of billion-scale datasets of deep descriptors A Babenko, V Lempitsky Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016 | 269 | 2016 |
TabDDPM: Modelling Tabular Data with Diffusion Models A Kotelnikov, D Baranchuk, I Rubachev, A Babenko ICML'2023, 2023 | 264 | 2023 |
A critical look at the evaluation of GNNs under heterophily: are we really making progress? O Platonov, D Kuznedelev, M Diskin, A Babenko, L Prokhorenkova ICLR'2023, 2023 | 200 | 2023 |
On Embeddings for Numerical Features in Tabular Deep Learning Y Gorishniy, I Rubachev, A Babenko NeurIPS'2022, 2022 | 171 | 2022 |
Editable neural networks A Sinitsin, V Plokhotnyuk, D Pyrkin, S Popov, A Babenko ICLR'2020, 2020 | 167 | 2020 |
Tree quantization for large-scale similarity search and classification A Babenko, V Lempitsky Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015 | 127 | 2015 |
Revisiting the inverted indices for billion-scale approximate nearest neighbors D Baranchuk, A Babenko, Y Malkov Proceedings of the European Conference on Computer Vision (ECCV), 202-216, 2018 | 103 | 2018 |
Non-metric similarity graphs for maximum inner product search S Morozov, A Babenko Advances in Neural Information Processing Systems 31, 2018 | 90 | 2018 |
Navigating the gan parameter space for semantic image editing A Cherepkov, A Voynov, A Babenko Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 82 | 2021 |
Object segmentation without labels with large-scale generative models A Voynov, S Morozov, A Babenko International Conference on Machine Learning, 10596-10606, 2021 | 72* | 2021 |
Characterizing graph datasets for node classification: Beyond homophily-heterophily dichotomy O Platonov, D Kuznedelev, A Babenko, L Prokhorenkova NeurIPS'2023, 2023 | 70* | 2023 |
Results of the NeurIPS’21 challenge on billion-scale approximate nearest neighbor search HV Simhadri, G Williams, M Aumüller, M Douze, A Babenko, D Baranchuk, ... NeurIPS 2021 Competitions and Demonstrations Track, 177-189, 2022 | 62 | 2022 |