On the first group of the chromatic cohomology of graphs MD Pabiniak, JH Przytycki, R Sazdanović Geometriae Dedicata 140 (1), 19-48, 2009 | 47 | 2009 |
Givental’s non-linear Maslov index on lens spaces G Granja, Y Karshon, M Pabiniak, S Sandon International Mathematics Research Notices 2021 (23), 18225-18299, 2021 | 28 | 2021 |
Gromov width of non-regular coadjoint orbits of U (n), SO (2n) and SO (2n+ 1) M Pabiniak arXiv preprint arXiv:1302.7213, 2013 | 25* | 2013 |
Simplices in Newton-Okounkov bodies and the Gromov width of coadjoint orbits X Fang, P Littelmann, M Pabiniak arXiv preprint arXiv:1607.01163, 2016 | 24 | 2016 |
On the Gromov width of polygon spaces A Mandini, M Pabiniak Transformation Groups 23, 149-183, 2018 | 15 | 2018 |
Displacing (Lagrangian) submanifolds in the manifolds of full flags M Pabiniak Advances in Geometry 15 (1), 101-108, 2015 | 13 | 2015 |
Every symplectic toric orbifold is a centered reduction of a Cartesian product of weighted projective spaces A Marinković, M Pabiniak International Mathematics Research Notices 2015 (23), 12432-12458, 2015 | 7 | 2015 |
Localization and specialization for Hamiltonian torus actions M Pabiniak | 7 | 2014 |
The Gromov width of coadjoint orbits of the symplectic group I Halacheva, M Pabiniak Pacific Journal of Mathematics 295 (2), 403-420, 2018 | 6 | 2018 |
On displaceability of pre-Lagrangian toric fibers in contact toric manifolds A Marinković, M Pabiniak International Journal of Mathematics 27 (14), 1650113, 2016 | 6* | 2016 |
Hamiltonian torus actions in equivariant cohomology and symplectic topology MD Pabiniak Cornell University, 2012 | 6 | 2012 |
Symplectic cohomological rigidity via toric degnerations M Pabiniak, S Tolman arXiv preprint arXiv:2002.12434, 2020 | 5 | 2020 |
Givental’s non-linear Maslov index on lens spaces, arXiv e-prints (2017) G Granja, Y Karshon, M Pabiniak, S Sandon arXiv preprint arXiv:1704.05827, 0 | 4 | |
Canonical bases for the equivariant cohomology and K-theory rings of symplectic toric manifolds M Pabiniak, S Sabatini arXiv preprint arXiv:1503.04730, 2015 | 2 | 2015 |
Generalizing the Mukai Conjecture to the symplectic category and the Kostant game A Caviedes Castro, M Pabiniak, S Sabatini arXiv e-prints, arXiv: 2206.00456, 2022 | 1 | 2022 |
Toric degenerations in symplectic geometry M Pabiniak International Conference on Interactions with Lattice Polytopes, 263-286, 2017 | 1 | 2017 |
Generalizing the Mukai Conjecture to the symplectic category and the Kostant game AC Castro, M Pabiniak, S Sabatini arXiv preprint arXiv:2206.00456, 2022 | | 2022 |
Every symplectic toric orbifold is a centered reduction of a Cartesian product of weighted projective spaces (vol 2015, pg 12432, 2015) A Marinkovic, M Pabiniak INTERNATIONAL MATHEMATICS RESEARCH NOTICES 2021 (20), 16008-16008, 2021 | | 2021 |
Erratum to “Every symplectic toric orbifold is a centered reduction of a Cartesian product of weighted projective spaces” A Marinković, M Pabiniak International Mathematics Research Notices 2021 (20), 16008-16008, 2021 | | 2021 |