Suivre
Stephen R. Pfohl
Stephen R. Pfohl
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Large language models encode clinical knowledge
K Singhal, S Azizi, T Tu, SS Mahdavi, J Wei, HW Chung, N Scales, ...
Nature 620 (7972), 172-180, 2023
23442023
Toward expert-level medical question answering with large language models
K Singhal, T Tu, J Gottweis, R Sayres, E Wulczyn, M Amin, L Hou, K Clark, ...
Nature Medicine, 1-8, 2025
7072025
An empirical characterization of fair machine learning for clinical risk prediction
SR Pfohl, A Foryciarz, NH Shah
Journal of biomedical informatics 113, 103621, 2021
1242021
Language models are an effective representation learning technique for electronic health record data
E Steinberg, K Jung, JA Fries, CK Corbin, SR Pfohl, NH Shah
Journal of Biomedical Informatics 113, 103637, 2021
1222021
The value of standards for health datasets in artificial intelligence-based applications
A Arora, JE Alderman, J Palmer, S Ganapathi, E Laws, MD McCradden, ...
Nature Medicine 29 (11), 2929-2938, 2023
1082023
Characterization of the contribution of genetic background and gender to disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: a meta-analysis
SR Pfohl, MT Halicek, CS Mitchell
Journal of neuromuscular diseases 2 (2), 137-150, 2015
1082015
Creating fair models of atherosclerotic cardiovascular disease risk
S Pfohl, B Marafino, A Coulet, F Rodriguez, L Palaniappan, NH Shah
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 271-278, 2019
822019
Federated and differentially private learning for electronic health records
SR Pfohl, AM Dai, K Heller
arXiv preprint arXiv:1911.05861, 2019
802019
Counterfactual Reasoning for Fair Clinical Risk Prediction
SR Pfohl, T Duan, DY Ding, NH Shah
Proceedings of the 4th Machine Learning for Healthcare Conference 106, 325-358, 2019
802019
Improving the Fairness of Chest X-ray Classifiers
H Zhang, N Dullerud, K Roth, L Oakden-Rayner, S Pfohl, M Ghassemi
Conference on Health, Inference, and Learning, 204-233, 2022
752022
Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine
LL Guo, SR Pfohl, J Fries, AEW Johnson, J Posada, C Aftandilian, N Shah, ...
Scientific Reports 12 (1), 1-10, 2022
732022
Tackling bias in AI health datasets through the STANDING Together initiative
S Ganapathi, J Palmer, JE Alderman, M Calvert, C Espinoza, J Gath, ...
Nature Medicine 28 (11), 2232-2233, 2022
642022
Unraveling the complexity of amyotrophic lateral sclerosis survival prediction
SR Pfohl, RB Kim, GS Coan, CS Mitchell
Frontiers in neuroinformatics 12, 36, 2018
472018
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
J Eisenstein, C Nagpal, A Agarwal, A Beirami, A D'Amour, DJ Dvijotham, ...
arXiv preprint arXiv:2312.09244, 2023
462023
Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine
LL Guo, SR Pfohl, J Fries, J Posada, SL Fleming, C Aftandilian, N Shah, ...
Applied Clinical Informatics 12 (04), 808-815, 2021
462021
EHR foundation models improve robustness in the presence of temporal distribution shift
LL Guo, E Steinberg, SL Fleming, J Posada, J Lemmon, SR Pfohl, N Shah, ...
Scientific Reports 13 (1), 3767, 2023
432023
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
SR Pfohl, H Zhang, Y Xu, A Foryciarz, M Ghassemi, NH Shah
Scientific Reports 12 (1), 1-13, 2022
372022
Development and validation of a prognostic model predicting symptomatic hemorrhagic transformation in acute ischemic stroke at scale in the OHDSI network
Q Wang, JM Reps, KF Kostka, PB Ryan, Y Zou, EA Voss, PR Rijnbeek, ...
PloS one 15 (1), e0226718, 2020
332020
Net benefit, calibration, threshold selection, and training objectives for algorithmic fairness in healthcare
S Pfohl, Y Xu, A Foryciarz, N Ignatiadis, J Genkins, N Shah
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and …, 2022
322022
The effectiveness of multitask learning for phenotyping with electronic health records data
DY Ding, C Simpson, S Pfohl, DC Kale, K Jung, NH Shah
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 24, 18, 2019
322019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20