Grass: Generative recursive autoencoders for shape structures J Li, K Xu, S Chaudhuri, E Yumer, H Zhang, L Guibas ACM Transactions on Graphics (TOG) 36 (4), 1-14, 2017 | 463 | 2017 |
A two-streamed network for estimating fine-scaled depth maps from single rgb images J Li, R Klein, A Yao Proceedings of the IEEE international conference on computer vision, 3372-3380, 2017 | 304 | 2017 |
Learning Canonical Shape Space for Category-Level 6D Object Pose and Size Estimation D Chen, J Li, K Xu Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2020 | 202 | 2020 |
Symmetry hierarchy of man‐made objects Y Wang, K Xu, J Li, H Zhang, A Shamir, L Liu, Z Cheng, Y Xiong Computer graphics forum 30 (2), 287-296, 2011 | 155 | 2011 |
Learning to decompose the modes in few-mode fibers with deep convolutional neural network Y An, L Huang, J Li, J Leng, L Yang, P Zhou Optics express 27 (7), 10127-10137, 2019 | 150 | 2019 |
Im2struct: Recovering 3d shape structure from a single rgb image C Niu, J Li, K Xu Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018 | 144 | 2018 |
Mobile bin picking with an anthropomorphic service robot M Nieuwenhuisen, D Droeschel, D Holz, J Stückler, A Berner, J Li, R Klein, ... 2013 IEEE International Conference on Robotics and Automation, 2327-2334, 2013 | 136 | 2013 |
Fiber laser development enabled by machine learning: review and prospect M Jiang, H Wu, Y An, T Hou, Q Chang, L Huang, J Li, R Su, P Zhou PhotoniX 3 (1), 16, 2022 | 95 | 2022 |
Active recognition and manipulation for mobile robot bin picking D Holz, M Nieuwenhuisen, D Droeschel, J Stückler, A Berner, J Li, R Klein, ... Gearing up and accelerating cross‐fertilization between academic and …, 2014 | 82 | 2014 |
Learning part generation and assembly for structure-aware shape synthesis J Li, C Niu, K Xu AAAI Conference on Artificial Intelligence, 2020 | 81 | 2020 |
Deep-learning-based phase control method for tiled aperture coherent beam combining systems T Hou, Y An, Q Chang, P Ma, J Li, D Zhi, L Huang, R Su, J Wu, Y Ma, ... High Power Laser Science and Engineering 7, e59, 2019 | 72 | 2019 |
Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation T Hou, Y An, Q Chang, P Ma, J Li, L Huang, D Zhi, J Wu, R Su, Y Ma, ... Photonics Research 8 (5), 715-722, 2020 | 68 | 2020 |
Deep learning-based real-time mode decomposition for multimode fibers Y An, L Huang, J Li, J Leng, L Yang, P Zhou IEEE Journal of Selected Topics in Quantum Electronics 26 (4), 1-6, 2020 | 55 | 2020 |
Numerical mode decomposition for multimode fiber: From multi-variable optimization to deep learning Y An, J Li, L Huang, L Li, J Leng, L Yang, P Zhou Optical Fiber Technology 52, 101960, 2019 | 43 | 2019 |
Deep learning wavefront sensing method for Shack-Hartmann sensors with sparse sub-apertures Y He, Z Liu, Y Ning, J Li, X Xu, Z Jiang Optics Express 29 (11), 17669-17682, 2021 | 34 | 2021 |
Deep learning enabled superfast and accurate M2 evaluation for fiber beams Y An, J Li, L Huang, J Leng, L Yang, P Zhou Optics Express 27 (13), 18683-18694, 2019 | 34 | 2019 |
Lightweight wrinkle synthesis for 3d facial modeling and animation J Li, W Xu, Z Cheng, K Xu, R Klein Computer-Aided Design 58, 117-122, 2015 | 29 | 2015 |
Combining contour and shape primitives for object detection and pose estimation of prefabricated parts A Berner, J Li, D Holz, J Stückler, S Behnke, R Klein 2013 IEEE International Conference on Image Processing, 3326-3330, 2013 | 29 | 2013 |
Fast modal analysis for Hermite–Gaussian beams via deep learning Y An, T Hou, J Li, L Huang, J Leng, L Yang, P Zhou Applied Optics 59 (7), 1954-1959, 2020 | 20 | 2020 |
Deep mode decomposition: real-time mode decomposition of multimode fibers based on unsupervised learning M Jiang, Y An, R Su, L Huang, J Li, P Ma, Y Ma, P Zhou IEEE Journal of Selected Topics in Quantum Electronics 28 (4: Mach. Learn …, 2022 | 16 | 2022 |