Suivre
Stephen Carrol Guth
Stephen Carrol Guth
Candidate for Juris Doctor at Harvard Law School
Adresse e-mail validée de jd26.law.harvard.edu
Titre
Citée par
Citée par
Année
Discovering and forecasting extreme events via active learning in neural operators
E Pickering, S Guth, GE Karniadakis, TP Sapsis
Nature Computational Science 2 (12), 823-833, 2022
642022
Machine learning predictors of extreme events occurring in complex dynamical systems
S Guth, TP Sapsis
Entropy 21 (10), 925, 2019
452019
Experimental study of electromagnetic Bessel-Gaussian Schell Model beams propagating in a turbulent channel
S Avramov-Zamurovic, C Nelson, S Guth, O Korotkova, R Malek-Madani
Optics Communications 359, 207-215, 2016
382016
Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air
S Avramov-Zamurovic, C Nelson, S Guth, O Korotkova
Applied optics 55 (13), 3442-3446, 2016
292016
Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment
C Nelson, S Avramov-Zamurovic, O Korotkova, S Guth, R Malek-Madani
Optics Communications 364, 145-149, 2016
272016
Wave episode based Gaussian process regression for extreme event statistics in ship dynamics: Between the Scylla of Karhunen–Loève convergence and the Charybdis of transient …
S Guth, TP Sapsis
Ocean Engineering 266, 112633, 2022
142022
Lagrangian and Eulerian analysis of transport and mixing in the three dimensional, time dependent Hill’s spherical vortex
KL McIlhany, S Guth, S Wiggins
Physics of Fluids 27 (6), 2015
132015
Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine monopile foundations using wave episodes and targeted CFD simulations through active sampling
S Guth, E Katsidoniotaki, TP Sapsis
Wind Energy 27 (1), 75-100, 2024
12*2024
Quality measures for the evaluation of machine learning architectures on the quantification of epistemic and aleatoric uncertainties in complex dynamical systems
S Guth, A Mojahed, TP Sapsis
Computer Methods in Applied Mechanics and Engineering 420, 116760, 2024
5*2024
Surrogate model of a wave energy system using sequential Bayesian experimental design with machine learning techniques
E Katsidoniotaki, S Guth, A Mojahed, M Göteman, T Sapsis
4*2023
Application of Gaussian process multi-fidelity optimal sampling to ship structural modeling
S Guth, B Champenois, TP Sapsis
34th Symp. on Naval Hydrodynamics, Washington, DC, June, 2022
32022
Probabilistic characterization of the effect of transient stochastic loads on the fatigue-crack nucleation time
S Guth, TP Sapsis
Probabilistic Engineering Mechanics 66, 103162, 2021
22021
A stochastically preluded Karhunen-Loève representation for recovering extreme statistics in ship dynamics
S Guth, TP Sapsis
Proc. 1st Int. Conf. On Stability and Safety of Ships and Ocean Vehicles …, 2021
12021
MICRODEM terrain grid computing: global SRTM geomorphometry
PL Guth, SC Guth
Computing, 1-6, 2006
12006
Co-reasoning by Humans in the Loop as a Goal for Designers of Machine Learning-Driven Algorithms in Medicine
S Guth
The American Journal of Bioethics 24 (9), 120-122, 2024
2024
Analytical and computational methods for non-Gaussian reliability analysis of nonlinear systems operating in stochastic environments
SC Guth
Massachusetts Institute of Technology, 2023
2023
Likelihood-weighted active learning with application to Bayesian optimization and uncertainty quantification for complex fluid flows
T Sapsis, A Blanchard, E Pickering, S Guth
Bulletin of the American Physical Society 67, 2022
2022
Analytic Methods for Estimating the Effects of Stochastic Intermittent Loading on Fatigue-Crack Nucleation
S Guth, T Sapsis
Advances in Nonlinear Dynamics: Proceedings of the Second International …, 2021
2021
Active Search methods to predict material failure under intermittent loading in the Serebrinksy-Ortiz fatigue model
S Guth, T Sapis
Dynamic Data Driven Applications Systems: Third International Conference …, 2020
2020
An exploration of data-driven techniques for predicting extreme events in intermittent dynamical systems
SC Guth
Massachusetts Institute of Technology, 2019
2019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20