Suivre
Anas Karuth
Anas Karuth
Senior Materials Scientist, Bridgestone Americas Research and Technology Center
Adresse e-mail validée de bfusa.com
Titre
Citée par
Citée par
Année
Predicting glass transition of amorphous polymers by application of cheminformatics and molecular dynamics simulations
A Karuth, A Alesadi, W Xia, B Rasulev
Polymer 218, 123495, 2021
622021
Experimental and simulation studies on nonwoven polypropylene–nitrile rubber blend: recycling of medical face masks to an engineering product
G Varghese P. J, DA David, A Karuth, JF Manamkeri Jafferali, SB P. M, ...
ACS omega 7 (6), 4791-4803, 2022
322022
Reactive molecular dynamics study of hygrothermal degradation of crosslinked epoxy polymers
A Karuth, A Alesadi, A Vashisth, W Xia, B Rasulev
ACS Applied Polymer Materials 4 (6), 4411-4423, 2022
302022
Energy dissipation characteristics of crosslinks in natural rubber: an assessment using low and high-frequency analyzer
K Anas, S David, RR Babu, M Selvakumar, S Chattopadhyay
Journal of Polymer Engineering 38 (8), 723-729, 2018
252018
A Quantitative Structure-Permittivity Relationship Study of a Series of Polymers
Y Zhuravskyi, K Iduoku, M Erickson, A Karuth, D Usmanov, ...
ACS Materials Au, 2024
112024
Combined Machine Learning, Computational, and Experimental Analysis of the Iridium (III) Complexes with Red to Near-Infrared Emission
A Karuth, GM Casanola-Martin, L Lystrom, W Sun, D Kilin, S Kilina, ...
The Journal of Physical Chemistry Letters 15 (2), 471-480, 2024
102024
Integrated machine learning, computational, and experimental investigation of compatibility in oil-modified silicone elastomer coatings
A Karuth, S Szwiec, GM Casanola-Martin, A Khanam, M Safaripour, ...
Progress in Organic Coatings 193, 108526, 2024
52024
Machine learning analysis of a large set of homopolymers to predict glass transition temperatures
GM Casanola-Martin, A Karuth, H Pham-The, H González-Díaz, ...
Communications Chemistry 7 (1), 226, 2024
22024
Phytochemical constituents isolated from Silene popovii Schischk
UY Yusupova, KM Bobakulov, AR Khurramov, VN Syrov, FR Egamova, ...
Medicinal Chemistry Research, 1-9, 2024
2024
Machine learning analysis of a large set of homopolymers to predict glass transition temperatures
G Casañola, A Karuth, H González-Díaz, DC Webster, B Rasulev
Springer Nature, 2024
2024
Integrated Machine Learning and Computational Framework for Predicting the Thermophysical and Functional Properties of Polymers
A Karuth
North Dakota State University, 2023
2023
Predicting the Glass Transition Temperature of Amorphous Polymers via Integration of Cheminformatics and Molecular Dynamics Simulations
A Karuth, A Alesadi, W Xia, B Rasulev
Machine learning potential for predicting the properties and simulating the degradation behavior in polymeric materials
A Karuth
ACS spring 2022, 0
Energy dissipation characteristics of elastomer under dynamic conditions-A comprehensive assessment using a conventional and a very high frequency dynamic mechanical analyzer
K Anas, M Selvakumar, S David, RR Babu, S Chattopadhyay
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–14