Backpropagating through Fr\'echet Inception Distance A Mathiasen, F Hvilshøj arXiv preprint arXiv:2009.14075, 2020 | 30 | 2020 |
ECINN: efficient counterfactuals from invertible neural networks F Hvilshøj, A Iosifidis, I Assent arXiv preprint arXiv:2103.13701, 2021 | 25 | 2021 |
Fast fréchet inception distance A Mathiasen, F Hvilshøj arXiv preprint arXiv:2009.14075 7, 2020 | 19 | 2020 |
MeLIME: meaningful local explanation for machine learning models T Botari, F Hvilshøj, R Izbicki, AC de Carvalho arXiv preprint arXiv:2009.05818, 2020 | 16 | 2020 |
On quantitative evaluations of counterfactuals F Hvilshøj, A Iosifidis, I Assent arXiv preprint arXiv:2111.00177, 2021 | 15 | 2021 |
What if Neural Networks had SVDs? A Mathiasen, F Hvilshøj, JR Jørgensen, A Nasery, D Mottin Thirty-fourth Conference on Neural Information Processing Systems, 2020 | 12 | 2020 |
Faster Orthogonal Parameterization with Householder Matrices A Mathiasen, F Hvilshøj, JR Jørgensen, A Nasery, D Mottin ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit …, 2020 | 4 | 2020 |
Reducing the cost of quantum chemical data by backpropagating through density functional theory A Mathiasen, H Helal, P Balanca, A Krzywaniak, A Parviz, F Hvilshøj, ... arXiv preprint arXiv:2402.04030, 2024 | 2 | 2024 |
One reflection suffice A Mathiasen, F Hvilshøj arXiv preprint arXiv:2009.14554, 2020 | 2 | 2020 |
Fast and Explainable Deep Neural Networks F Hvilshøj Århus Universitet, 2021 | | 2021 |