Suivre
Martin Gauch
Martin Gauch
Adresse e-mail validée de google.com
Titre
Citée par
Citée par
Année
Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
M Gauch, F Kratzert, D Klotz, G Nearing, J Lin, S Hochreiter
Hydrology and Earth System Sciences 25 (4), 2045-2062, 2021
2092021
Deep learning rainfall-runoff predictions of extreme events
J Frame, F Kratzert, D Klotz, M Gauch, G Shelev, O Gilon, LM Qualls, ...
(No Title), 2021
1852021
The proper care and feeding of CAMELS: How limited training data affects streamflow prediction
M Gauch, J Mai, J Lin
Environmental Modelling & Software 135, 104926, 2021
1392021
Uncertainty estimation with deep learning for rainfall–runoff modeling
D Klotz, F Kratzert, M Gauch, A Keefe Sampson, J Brandstetter, ...
Hydrology and Earth System Sciences 26 (6), 1673-1693, 2022
1312022
Hydrological concept formation inside long short-term memory (LSTM) networks
T Lees, S Reece, F Kratzert, D Klotz, M Gauch, J De Bruijn, R Kumar Sahu, ...
Hydrology and Earth System Sciences Discussions 2021, 1-37, 2021
1072021
Caravan-A global community dataset for large-sample hydrology
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
Scientific Data 10 (1), 61, 2023
1052023
Global prediction of extreme floods in ungauged watersheds
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
Nature 627 (8004), 559-563, 2024
732024
The great lakes runoff intercomparison project phase 4: the great lakes (GRIP-GL)
J Mai, H Shen, BA Tolson, É Gaborit, R Arsenault, JR Craig, V Fortin, ...
Hydrology and Earth System Sciences 26 (13), 3537-3572, 2022
682022
NeuralHydrology—A Python library for Deep Learning research in hydrology
F Kratzert, M Gauch, G Nearing, D Klotz
Journal of Open Source Software 7 (71), 4050, 2022
622022
Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
GS Nearing, D Klotz, JM Frame, M Gauch, O Gilon, F Kratzert, ...
Hydrology and Earth System Sciences 26 (21), 5493-5513, 2022
392022
HESS Opinions: Never train an LSTM on a single basin
F Kratzert, M Gauch, D Klotz, G Nearing
Hydrology and Earth system sciences discussions 2024, 1-19, 2024
372024
Caravan–A global community dataset for large-sample hydrology, Sci. Data, 10, 61
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
362023
Conformal prediction for time series with modern hopfield networks
A Auer, M Gauch, D Klotz, S Hochreiter
Advances in Neural Information Processing Systems 36, 56027-56074, 2023
262023
Great lakes runoff intercomparison project phase 3: lake Erie (GRIP-E)
J Mai, BA Tolson, H Shen, É Gaborit, V Fortin, N Gasset, H Awoye, ...
Journal of hydrologic engineering 26 (9), 05021020, 2021
252021
In defense of metrics: Metrics sufficiently encode typical human preferences regarding hydrological model performance
M Gauch, F Kratzert, O Gilon, H Gupta, J Mai, G Nearing, B Tolson, ...
Water Resources Research 59 (6), e2022WR033918, 2023
242023
Data-driven vs. physically-based streamflow prediction models
M Gauch, J Mai, S Gharari, J Lin
Proceedings of the 9th International Workshop on Climate Informatics, Paris …, 2019
202019
Caravan-A global community dataset for large-sample hydrology, Scientific Data, 10, 61
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
162023
A Data Scientist's Guide to Streamflow Prediction
M Gauch, J Lin
arXiv preprint arXiv:2006.12975, 2020
132020
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
F Kratzert, M Gauch, D Klotz, G Nearing
Hydrology and Earth System Sciences 28 (17), 4187-4201, 2024
122024
AI increases global access to reliable flood forecasts
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
arXiv preprint arXiv:2307.16104, 2023
112023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20