Bilevel optimization S Dempe, A Zemkoho Springer Optimization and its Applications. Vol. 161, 2020 | 236 | 2020 |
The bilevel programming problem: reformulations, constraint qualifications and optimality conditions S Dempe, AB Zemkoho Mathematical Programming 138 (1-2), 447-473, 2013 | 194 | 2013 |
Necessary optimality conditions in pessimistic bilevel programming S Dempe, BS Mordukhovich, AB Zemkoho Optimization 63 (4), 505--533, 2014 | 142 | 2014 |
On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem S Dempe, AB Zemkoho Nonlinear Analysis: Theory, Methods & Applications 75 (3), 1202-1218, 2012 | 113 | 2012 |
The generalized Mangasarian-Fromowitz constraint qualification and optimality conditions for bilevel programs S Dempe, AB Zemkoho Journal of Optimization Theory and Applications 148 (1), 46-68, 2011 | 91 | 2011 |
Sensitivity analysis for two-level value functions with applications to bilevel programming S Dempe, BS Morduchovich, AB Zemkoho SIAM Journal on Optimization 22 (4), 1309-1343, 2012 | 81 | 2012 |
New optimality conditions for the semivectorial bilevel optimization problem S Dempe, N Gadhi, AB Zemkoho Journal of Optimization Theory and Applications 157 (1), 54–74, 2013 | 80 | 2013 |
An inertial extrapolation method for convex simple bilevel optimization Y Shehu, PT Vuong, A Zemkoho Optimization Methods and Software 36 (1), 1-19, 2021 | 72 | 2021 |
Bilevel road pricing: theoretical analysis and optimality conditions S Dempe, AB Zemkoho Annals of Operations Research 196 (1), 223–240, 2012 | 52 | 2012 |
KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization S Dempe, AB Zemkoho SIAM Journal on Optimization 24 (4), 1639-1669, 2014 | 51 | 2014 |
Solving ill-posed bilevel programs AB Zemkoho Set-valued and Variational Analysis 24 (3), 423-448, 2016 | 49 | 2016 |
BOLIB: Bilevel Optimization LIBrary of test problems S Zhou, AB Zemkoho, A Tin Bilevel Optimization: Advances and Next Challenges, 563-580, 2020 | 27 | 2020 |
Bilevel programming: reformulations, regularity, and stationarity AB Zemkoho Thesis, Freiberg, TU Bergakademie Freiberg, 2012, 2012 | 25 | 2012 |
Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments A Fischer, AB Zemkoho, S Zhou Optimization Methods and Software 37 (5), 1770-1804, 2022 | 24 | 2022 |
A note on partial calmness for bilevel optimization problems with linearly structured lower level P Mehlitz, LI Minchenko, AB Zemkoho Optimization Letters 15 (4), 1277-1291, 2021 | 24 | 2021 |
Theoretical and numerical comparison of the Karush-Kuhn-Tucker and value function reformulations in bilevel optimization A Zemkoho, S Zhou Computational Optimization and Applications 78 (2), 625–674, 2021 | 24 | 2021 |
Two-level value function approach to non-smooth optimistic and pessimistic bilevel programs S Dempe, BS Mordukhovich, AB Zemkoho Optimization 68 (2-3), 433-455, 2019 | 20 | 2019 |
Gauss-Newton-type methods for bilevel optimization J Fliege, A Tin, A Zemkoho Computational Optimization and Applications 78, 793–824, 2021 | 19 | 2021 |
Deep learning methods for screening patients' S-ICD implantation eligibility AJ Dunn, MH ElRefai, PR Roberts, S Coniglio, BM Wiles, AB Zemkoho Artificial Intelligence in Medicine 119, 102139, 2021 | 18 | 2021 |
Sufficient optimality conditions in bilevel programming P Mehlitz, AB Zemkoho Mathematics of Operations Research 46 (4), 1573-1598, 2021 | 17 | 2021 |