Suivre
Naman Shah
Naman Shah
Postdoc, Brown University
Adresse e-mail validée de asu.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Anytime integrated task and motion policies for stochastic environments
N Shah, DK Vasudevan, K Kumar, P Kamojjhala, S Srivastava
2020 IEEE International Conference on Robotics and Automation (ICRA), 9285-9291, 2020
432020
Using deep learning to bootstrap abstractions for hierarchical robot planning
N Shah, S Srivastava
Autonomous Agents and Multi-Agent Systems (AAMAS), 2022
292022
Jedai: A system for skill-aligned explainable robot planning
N Shah, P Verma, T Angle, S Srivastava
Autonomous Agents and Multi-Agent Systems (AAMAS), 2021
162021
From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions and Models for Planning from Raw Data
N Shah, J Nagpal, P Verma, S Srivastava
arXiv preprint arXiv:2402.11871, 2024
92024
Learning Sampling Distributions for Efficient High‐Dimensional Motion Planning
N Shah, A Srinet, S Srivastava
ICAPS Workshop on Planning in Robotics (PlanRob), 2020
7*2020
Hierarchical planning and learning for robots in stochastic settings using zero-shot option invention
N Shah, S Srivastava
Proceedings of the AAAI Conference on Artificial Intelligence 38 (9), 10358 …, 2024
52024
Multi-task option learning and discovery for stochastic path planning
N Shah, S Srivastava
arXiv preprint arXiv:2210.00068, 2022
32022
Perfect Observability is a Myth: Restraining Bolts in the Real World
M Verma, N Shah, RK Nayyar, A Hanni
32021
Using Explainable AI and Hierarchical Planning for Outreach with Robots
D Dobhal, J Nagpal, R Karia, P Verma, RK Nayyar, N Shah, S Srivastava
arXiv preprint arXiv:2404.00808, 2024
12024
Learning Neuro-Symbolic Abstractions for Robot Planning and Learning
N Shah
Proceedings of the AAAI Conference on Artificial Intelligence 38 (21), 23417 …, 2024
12024
An Anytime Hierarchical Approach for Stochastic Task and Motion Planning
N Shah, S Srivastava
arXiv preprint arXiv:2108.12537, 2021
12021
Anytime Stochastic Task and Motion Policies
N Shah, S Srivastava
arXiv preprint arXiv:2108.12537, 2021
12021
Zero-Shot Option Invention for Robot Planning Under Uncertainty
N Shah, S Srivastava
CoRL 2023 Workshop on Learning Effective Abstractions for Planning (LEAP), 0
1
SkillWrapper: Skill Abstraction in the Era of Foundation Models
SS Raman, Z Yang, B Hedegaard, S Tellex, D Paulius, N Shah
2nd CoRL Workshop on Learning Effective Abstractions for Planning, 2024
2024
Structured Exploration in Reinforcement Learning by Hypothesizing Linear Temporal Logic Formulas
Y Wei, X Li, JX Liu, N Shah, B Quartey, G Konidaris, S Tellex, A Bagaria
2nd CoRL Workshop on Learning Effective Abstractions for Planning, 2024
2024
Autonomously Learning World-Model Representations For Efficient Robot Planning
N Shah
Arizona State University, 2024
2024
Reliable Neuro-Symbolic Abstractions for Planning and Learning.
N Shah
IJCAI, 7093-7094, 2023
2023
Learning to Create Abstraction Hierarchies for Motion Planning under Uncertainty
N Shah, S Srivastava
PRL Workshop Series {\textendash} Bridging the Gap Between AI Planning and …, 0
Learning How to Create Generalizable Hierarchies for Robot Planning
N Shah, S Srivastava
NeurIPS 2023 Workshop on Generalization in Planning, 0
Learning to Zero-Shot Invent Options for Robot Planning Under Uncertainty
N Shah, S Srivastava
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20