Suivre
AkshatKumar Nigam
AkshatKumar Nigam
Autres nomsAkshat Nigam
PhD Student, Stanford University
Adresse e-mail validée de stanford.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
M Krenn, F Hase, AK Nigam, P Friederich, A Aspuru-Guzik
Machine Learning: Science and Technology, 2020
9322020
Data-driven strategies for accelerated materials design
R Pollice, G dos Passos Gomes, M Aldeghi, RJ Hickman, M Krenn, ...
Accounts of Chemical Research 54 (4), 849-860, 2021
3282021
On scientific understanding with artificial intelligence
M Krenn, R Pollice, SY Guo, M Aldeghi, A Cervera-Lierta, P Friederich, ...
Nature Reviews Physics 4 (12), 761-769, 2022
2522022
A comprehensive discovery platform for organophosphorus ligands for catalysis
T Gensch, G dos Passos Gomes, P Friederich, E Peters, T Gaudin, ...
Journal of the American Chemical Society, 2021
2132021
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AK Nigam, P Friederich, M Krenn, A Aspuru-Guzik
International Conference on Learning Representations (ICLR)., 2020
1622020
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
AK Nigam, R Pollice, M Krenn, G dos Passos Gomes, A Aspuru-Guzik
Chemical science 12 (20), 7079-7090, 2021
1562021
SELFIES and the future of molecular string representations
M Krenn, Q Ai, S Barthel, N Carson, A Frei, NC Frey, P Friederich, ...
Patterns 3 (10), 2022
1502022
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
AK Nigam, R Pollice, A Aspuru-Guzik
Digital Discovery 1 (4), 390-404, 2022
80*2022
Assigning confidence to molecular property prediction
AK Nigam, R Pollice, MFD Hurley, RJ Hickman, M Aldeghi, N Yoshikawa, ...
Expert opinion on drug discovery 16 (9), 1009-1023, 2021
592021
Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning
LA Thiede, M Krenn, AK Nigam, A Aspuru-Guzik
Machine Learning: Science and Technology 3 (3), 035008, 2020
49*2020
Tartarus: A benchmarking platform for realistic and practical inverse molecular design
AK Nigam, R Pollice, G Tom, K Jorner, LA Thiede, A Kundaje, ...
37th Conference on Neural Information Processing Systems (NeurIPS 2023 …, 2023
312023
Deciphering the impact of genomic variation on function
Code of Conduct Committee (alphabetical by last name) Cody Sarah 33 Farrell ...
Nature 633 (8028), 47-57, 2024
19*2024
Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network
AK Nigam, R Pollice, P Friederich, A Aspuru-Guzik
Chemical Science 15 (7), 2618-2639, 2024
152024
Virtualflow 2.0-the next generation drug discovery platform enabling adaptive screens of 69 billion molecules
C Gorgulla, AK Nigam, M Koop, S Selim Çınaroğlu, C Secker, ...
bioRxiv, 2023.04. 25.537981, 2023
132023
Recent advances in the Self-Referencing Embedding Strings (SELFIES) library
A Lo, R Pollice, AK Nigam, AD White, M Krenn, A Aspuru-Guzik
Digital Discovery 2, 897-908, 2023
11*2023
Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors
M Ghazi Vakili, C Gorgulla, J Snider, AK Nigam, D Bezrukov, D Varoli, ...
Nature Biotechnology, 1-6, 2025
10*2025
An SLC12A9-dependent ion transport mechanism maintains lysosomal osmolarity
R Levin-Konigsberg, K Mitra, K Spees, AK Nigam, K Liu, C Januel, ...
Developmental Cell 60 (2), 220-235. e7, 2025
7*2025
Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes
AK Nigam, MFD Hurley, F Li, E Konkoľová, M Klíma, J Trylčová, R Pollice, ...
Digital Discovery, 2024
4*2024
Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines
N Kusanda, G Tom, R Hickman, AK Nigam, K Jorner, A Aspuru-Guzik
AI for Accelerated Materials Design NeurIPS 2022 Workshop, 2022
32022
Exploring the chemical space without bias: data-free molecule generation with DQN and SELFIES
T Gaudin, AK Nigam, A Aspuru-Guzik
NeurIPS-2019 MLPS Workshop, 0
3*
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20