Prediction of surface roughness with genetic programming M Brezocnik, M Kovacic, M Ficko Journal of materials processing technology 157, 28-36, 2004 | 267 | 2004 |
Designing the layout of single-and multiple-rows flexible manufacturing system by genetic algorithms M Ficko, M Brezocnik, J Balic Journal of materials processing technology 157, 150-158, 2004 | 140 | 2004 |
Classifying Parkinson’s disease based on acoustic measures using artificial neural networks L Berus, S Klancnik, M Brezocnik, M Ficko Sensors 19 (1), 16, 2018 | 109 | 2018 |
Prediction of total manufacturing costs for stamping tool on the basis of CAD-model of finished product M Ficko, I Drstvenšek, M Brezočnik, J Balič, B Vaupotic Journal of materials processing technology 164, 1327-1335, 2005 | 79 | 2005 |
Parametric study of throughput performance in SBS/RS based on simulation T Lerher, M Borovinsek, M Ficko, I Palcic International journal of simulation modelling 16 (1), 96-107, 2017 | 62 | 2017 |
Multi-criteria selection of manufacturing processes in the conceptual process planning. D Lukic, M Milosevic, A Antic, M Ficko Advances in Production Engineering & Management 12 (2), 2017 | 59 | 2017 |
Throughput performance analysis of automated vehicle storage and retrieval systems with multiple-tier shuttle vehicles T Lerher, M Ficko, I Palčič Applied mathematical modelling 91, 1004-1022, 2021 | 51 | 2021 |
Computer vision-based approach to end mill tool monitoring S Klancnik, M Ficko, J Balic, I Pahole International Journal of Simulation Modelling 14 (4), 571-583, 2015 | 45 | 2015 |
Automatic identification of tool wear based on thermography and a convolutional neural network during the turning process N Brili, M Ficko, S Klančnik Sensors 21 (5), 1917, 2021 | 41 | 2021 |
Designing a layout using the modified triangle method, and genetic algorithms M Ficko, I Palcic algorithms 18, 19, 2013 | 41 | 2013 |
Prediction of surface roughness of an abrasive water jet cut using an artificial neural network M Ficko, D Begic-Hajdarevic, M Cohodar Husic, L Berus, A Cekic, ... Materials 14 (11), 3108, 2021 | 40 | 2021 |
Rapid prototyping processes give new possibilities to numerical copying techniques I Pahole, I Drstvensek, M Ficko, J Balic Journal of materials processing technology 164, 1416-1422, 2005 | 39 | 2005 |
Intelligent design of an unconstrained layout for a flexible manufacturing system M Ficko, S Brezovnik, S Klancnik, J Balic, M Brezocnik, I Pahole Neurocomputing 73 (4-6), 639-647, 2010 | 38 | 2010 |
Prediction of laser cut quality for tungsten alloy using the neural network method/Napovedovanje kakovosti laserskega reza volframove zlitine z uporabo nevronske mreze S Klancnik, D Begic-Hajdarevic, M Paulic, M Ficko, A Cekic, MC Husic Strojniski vestnik-Journal of Mechanical Engineering 61 (12), 714-722, 2015 | 34 | 2015 |
Evaluation of twist springback prediction after an AHSS forming process M Dezelak, A Stepisnik, I Pahole, M Ficko International Journal of Simulation Modelling 13 (2), 171-182, 2014 | 34 | 2014 |
A model of tool wear monitoring system for turning. A Antić, G Šimunović, T Šarić, M Milošević, M Ficko Technical Gazette/Tehnički Vjesnik 20 (2), 2013 | 34 | 2013 |
Deep learning in industry 4.0–brief overview J Hernavs, M Ficko, L Klančnik, R Rudolf, S Klančnik Journal of production engineering, 1-5, 2018 | 30 | 2018 |
Moderno proizvodno inženirstvo I Anžel, J Balič, O Blatnik, F Čuš, I Drstvenšek, M Ficko, N Herakovič, ... Grafis trade, 2010 | 30 | 2010 |
e-CAPP: A distributed collaborative system for internet-based process planning M Milosevic, D Lukic, A Antic, B Lalic, M Ficko, G Simunovic Journal of Manufacturing Systems 42, 210-223, 2017 | 29 | 2017 |
Effect of process parameters on tensile strength of FDM printed carbon fiber reinforced polyamide parts K Muhamedagic, L Berus, D Potočnik, A Cekic, D Begic-Hajdarevic, ... Applied Sciences 12 (12), 6028, 2022 | 27 | 2022 |