Prati
Daniel Persaud
Daniel Persaud
Potvrđena adresa e-pošte na mail.utoronto.ca
Naslov
Citirano
Citirano
Godina
Exploiting redundancy in large materials datasets for efficient machine learning with less data
K Li, D Persaud, K Choudhary, B DeCost, M Greenwood, ...
Nature Communications 14 (1), 7283, 2023
582023
Probing out-of-distribution generalization in machine learning for materials
K Li, AN Rubungo, X Lei, D Persaud, K Choudhary, B DeCost, AB Dieng, ...
Communications Materials 6 (1), 9, 2025
62025
A call for caution in the era of AI-accelerated materials science
K Li, E Kim, Y Fehlis, D Persaud, B DeCost, M Greenwood, ...
Matter 6 (12), 4116-4117, 2023
22023
AMPERE: automated modular platform for expedited and reproducible electrochemical testing
J Abed, Y Bai, D Persaud, J Kim, J Witt, J Hattrick-Simpers, EH Sargent
Digital Discovery 3 (11), 2265-2274, 2024
12024
Reproducibility in materials informatics: lessons from ‘A general-purpose machine learning framework for predicting properties of inorganic materials’
D Persaud, L Ward, J Hattrick-Simpers
Digital Discovery 3 (2), 281-286, 2024
12024
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–5