Prati
Matteo Ciniselli
Naslov
Citirano
Citirano
Godina
On the robustness of code generation techniques: An empirical study on github copilot
A Mastropaolo, L Pascarella, E Guglielmi, M Ciniselli, S Scalabrino, ...
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE …, 2023
1182023
An empirical study on the usage of transformer models for code completion
M Ciniselli, N Cooper, L Pascarella, A Mastropaolo, E Aghajani, ...
IEEE Transactions on Software Engineering 48 (12), 4818-4837, 2021
1052021
An empirical study on the usage of bert models for code completion
M Ciniselli, N Cooper, L Pascarella, D Poshyvanyk, M Di Penta, G Bavota
2021 IEEE/ACM 18th International Conference on Mining Software Repositories …, 2021
792021
Code review automation: strengths and weaknesses of the state of the art
R Tufano, O Dabić, A Mastropaolo, M Ciniselli, G Bavota
IEEE Transactions on Software Engineering 50 (2), 338-353, 2024
262024
To what extent do deep learning-based code recommenders generate predictions by cloning code from the training set?
M Ciniselli, L Pascarella, G Bavota
Proceedings of the 19th International Conference on Mining Software …, 2022
252022
An empirical study on the usage of BERT models for code completion. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)
M Ciniselli, N Cooper, L Pascarella, D Poshyvanyk, M Di Penta, G Bavota
IEEE, May, 108-119, 2021
212021
Evaluating code summarization techniques: A new metric and an empirical characterization
A Mastropaolo, M Ciniselli, M Di Penta, G Bavota
Proceedings of the IEEE/ACM 46th International Conference on Software …, 2024
162024
Source code recommender systems: The practitioners' perspective
M Ciniselli, L Pascarella, E Aghajani, S Scalabrino, R Oliveto, G Bavota
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE …, 2023
112023
An Empirical Study on the Usage of BERT Models for Code Completion. CoRR abs/2103.07115 (2021)
M Ciniselli, N Cooper, L Pascarella, D Poshyvanyk, M Di Penta, G Bavota
arXiv preprint arXiv:2103.07115, 2021
62021
The Trailer of the ACM 2030 Roadmap for Software Engineering
M Pezzè, M Ciniselli, L Di Grazia, N Puccinelli, K Qiu
ACM SIGSOFT Software Engineering Notes 49 (4), 31-40, 2024
42024
Towards summarizing code snippets using pre-trained transformers
A Mastropaolo, M Ciniselli, L Pascarella, R Tufano, E Aghajani, G Bavota
Proceedings of the 32nd IEEE/ACM International Conference on Program …, 2024
42024
On the generalizability of deep learning-based code completion across programming language versions
M Ciniselli, A Martin-Lopez, G Bavota
Proceedings of the 32nd IEEE/ACM International Conference on Program …, 2024
32024
From Today's Code to Tomorrow's Symphony: The AI Transformation of Developer's Routine by 2030
K Qiu, N Puccinelli, M Ciniselli, L Di Grazia
arXiv preprint arXiv:2405.12731, 2024
22024
Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information
M Ciniselli, L Pascarella, G Bavota
2024 IEEE International Conference on Software Maintenance and Evolution …, 2024
2024
Studying strengths and weaknesses of code recommenders
M Ciniselli
2023
Un approccio robusto per il problema dell'assegnamento ottimale dei pazienti agli operatori nei servizi di assistenza domiciliare
M CINISELLI
Politecnico di Milano, 2013
2013
2024 IEEE International Conference on Software Maintenance and Evolution (ICSME)| 979-8-3503-9568-6/24/$31.00© 2024 IEEE| DOI: 10.1109/ICSME58944. 2024.00102
R Abdalkareem, O Abdelaziz, AS Abdelfattah, MS Abid, D Abrahamyan, ...
2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)| 978-1-7281-8710-5/20/$31.00© 2021 IEEE| DOI: 10.1109/MSR52588. 2021.00090
R Abdalkareem, S Afroz, D Aggarwal, E Aghajani, V Agrahari, ...
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–18