Prati
Jaime Sevilla
Jaime Sevilla
Director, Epoch
Potvrđena adresa e-pošte na epochai.org
Naslov
Citirano
Citirano
Godina
Compute trends across three eras of machine learning
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022
3812022
Will we run out of data? an analysis of the limits of scaling datasets in machine learning
P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho
arXiv preprint arXiv:2211.04325 1, 2022
1722022
Machine learning model sizes and the parameter gap
P Villalobos, J Sevilla, T Besiroglu, L Heim, A Ho, M Hobbhahn
arXiv preprint arXiv:2207.02852, 2022
762022
Will we run out of data? Limits of LLM scaling based on human-generated data
P Villalobos, A Ho, J Sevilla, T Besiroglu, L Heim, M Hobbhahn
arXiv preprint arXiv:2211.04325, 2022
592022
Forecasting timelines of quantum computing
J Sevilla, CJ Riedel
arXiv preprint arXiv:2009.05045, 2020
432020
Position: Will we run out of data? Limits of LLM scaling based on human-generated data
P Villalobos, A Ho, J Sevilla, T Besiroglu, L Heim, M Hobbhahn
Forty-first International Conference on Machine Learning, 2024
252024
Algorithmic progress in language models
A Ho, T Besiroglu, E Erdil, D Owen, R Rahman, ZC Guo, D Atkinson, ...
arXiv preprint arXiv:2403.05812, 2024
242024
CTLearn: Deep learning for gamma-ray astronomy
D Nieto, A Brill, Q Feng, TB Humensky, B Kim, T Miener, R Mukherjee, ...
arXiv preprint arXiv:1912.09877, 2019
212019
Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai
E Glazer, E Erdil, T Besiroglu, D Chicharro, E Chen, A Gunning, ...
arXiv preprint arXiv:2411.04872, 2024
202024
Estimating training compute of deep learning models
J Sevilla, L Heim, M Hobbhahn, T Besiroglu, A Ho, P Villalobos
Tech. Rep., 2022
202022
Parameter counts in machine learning
J Sevilla, P Villalobos, J Cerón
AI Alignment Forum, 2021
162021
Parameter, compute and data trends in machine learning
J Sevilla, P Villalobos, JF Cerón, M Burtell, L Heim, AB Nanjajjar, A Ho, ...
2022-05-30]. https://docs. google. com/spreadsheets/d/1AAIebj …, 2021
152021
Key trends and figures in Machine Learning
Epoch
https://epochai.org/trends, 2023
142023
Compute trends across three eras of machine learning. arXiv
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
arXiv preprint arXiv:2202.05924, 2022
112022
What’s the backward-forward flop ratio for neural networks?
M Hobbhahn, J Sevilla
Retrieved May 16, 2023, 2021
102021
Can AI scaling continue through 2030
J Sevilla, T Besiroglu, B Cottier, J You, E Roldán
Analecta 2023, 1, 2024
92024
Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning, arXiv
P Villalobos, J Sevilla, L Heim, T Besiroglu, M Hobbhahn, A Ho
arXiv preprint arXiv:2211.04325, 2022
92022
Compute Trends Across Three Eras of Machine Learning.(2022)
J Sevilla, L Heim, A Ho, T Besiroglu, M Hobbhahn, P Villalobos
URL: https://arxiv. org/abs/2202.05924. doi 10, 2022
72022
Explaining data using causal Bayesian Networks
J Sevilla
2nd Workshop on Interactive Natural Language Technology for Explainable …, 2020
72020
Please report your compute
J Sevilla, A Ho, T Besiroglu
Communications of the ACM 66 (5), 30-32, 2023
62023
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20