Prati
Lukas Schott
Lukas Schott
Bosch Center for AI
Potvrđena adresa e-pošte na bethgelab.org
Naslov
Citirano
Citirano
Godina
Towards the first adversarially robust neural network model on MNIST
L Schott, J Rauber, M Bethge, W Brendel
International Conference on Learning Representations 2019, 2018
4572018
A simple way to make neural networks robust against diverse image corruptions
E Rusak, L Schott, RS Zimmermann, J Bitterwolf, O Bringmann, M Bethge, ...
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
2362020
Comparative study of deep learning software frameworks
S Bahrampour, N Ramakrishnan, L Schott, M Shah
arXiv preprint arXiv:1511.06435, 2015
2352015
Towards nonlinear disentanglement in natural data with temporal sparse coding
D Klindt, L Schott, Y Sharma, I Ustyuzhaninov, W Brendel, M Bethge, ...
arXiv preprint arXiv:2007.10930, 2020
1492020
Comparative study of caffe, neon, theano, and torch for deep learning
S Bahrampour, N Ramakrishnan, L Schott, M Shah
1402016
Visual representation learning does not generalize strongly within the same domain
L Schott, J Von Kügelgen, F Träuble, P Gehler, C Russell, M Bethge, ...
arXiv preprint arXiv:2107.08221, 2021
732021
Score-based generative classifiers
RS Zimmermann, L Schott, Y Song, BA Dunn, DA Klindt
arXiv preprint arXiv:2110.00473, 2021
722021
Increasing the robustness of dnns against im-age corruptions by playing the game of noise
E Rusak, L Schott, R Zimmermann, J Bitterwolfb, O Bringmann, M Bethge, ...
542020
Learned watershed: End-to-end learning of seeded segmentation
S Wolf, L Schott, U Kothe, F Hamprecht
Proceedings of the IEEE International Conference on Computer Vision, 2011-2019, 2017
532017
Deep learning on symbolic representations for large-scale heterogeneous time-series event prediction
S Zhang, S Bahrampour, N Ramakrishnan, L Schott, M Shah
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2016
302016
Understanding neural coding on latent manifolds by sharing features and dividing ensembles
M Bjerke, L Schott, KT Jensen, C Battistin, DA Klindt, BA Dunn
arXiv preprint arXiv:2210.03155, 2022
92022
Towards the first adversarially robust neural network model on mnist (2018)
L Schott, J Rauber, M Bethge, W Brendel
arXiv preprint arXiv:1805.09190, 1805
91805
Comparative study of deep learning software frameworks. arXiv 2015
S Bahrampour, N Ramakrishnan, L Schott, M Shah
arXiv preprint arXiv:1511.06435 3, 0
5
Comparative study of Caffe
S Bahrampour, N Ramakrishnan, L Schott, M Shah
Neon, Theano, and Torch for Deep Learning. arXiv 1511, 2015
42015
Mind the gap between synthetic and real: Utilizing transfer learning to probe the boundaries of stable diffusion generated data
L Hennicke, CM Adriano, H Giese, JM Koehler, L Schott
arXiv preprint arXiv:2405.03243, 2024
32024
Analytical uncertainty-based loss weighting in multi-task learning
L Kirchdorfer, C Elich, S Kutsche, H Stuckenschmidt, L Schott, JM Köhler
arXiv preprint arXiv:2408.07985, 2024
22024
Challenging common assumptions in multi-task learning
C Elich, L Kirchdorfer, JM Köhler, L Schott
arXiv preprint arXiv:2311.04698, 2023
22023
METHOD FOR TRAINING A MACHINE LEARNING MODEL
L Schott, JM Koehler, C Blaiotta
US Patent App. 18/774,344, 2025
2025
Device and method for classifying a digital image with an image classifier, for training the image classifier, and for determining an image dataset for the training
L Schott, C Blaiotta
US Patent App. 18/771,370, 2025
2025
Attention Is All You Need For Mixture-of-Depths Routing
A Gadhikar, SK Majumdar, N Popp, P Saranrittichai, M Rapp, L Schott
arXiv preprint arXiv:2412.20875, 2024
2024
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20