Tapnet: Neural network augmented with task-adaptive projection for few-shot learning SW Yoon, J Seo, J Moon International conference on machine learning, 7115-7123, 2019 | 318 | 2019 |
Xtarnet: Learning to extract task-adaptive representation for incremental few-shot learning SW Yoon, DY Kim, J Seo, J Moon International Conference on Machine Learning, 10852-10860, 2020 | 65 | 2020 |
Warping the space: Weight space rotation for class-incremental few-shot learning DY Kim, DJ Han, J Seo, J Moon The Eleventh International Conference on Learning Representations, 2023 | 52 | 2023 |
Few-round learning for federated learning Y Park, DJ Han, DY Kim, J Seo, J Moon Advances in Neural Information Processing Systems 34, 28612-28622, 2021 | 22 | 2021 |
Task-adaptive feature transformer with semantic enrichment for few-shot segmentation J Seo, YH Park, SW Yoon, J Moon arXiv preprint arXiv:2202.06498, 2022 | 8 | 2022 |
Cafenet: class-agnostic few-shot edge detection network YH Park, J Seo, J Moon arXiv preprint arXiv:2003.08235, 2020 | 7 | 2020 |
Task-adaptive feature transformer for few-shot segmentation J Seo, YH Park, SW Yoon, J Moon arXiv preprint arXiv:2010.11437, 2020 | 5 | 2020 |
Achieving lossless gradient sparsification via mapping to alternative space in federated learning DY Kim, DJ Han, J Seo, J Moon Forty-first International Conference on Machine Learning, 2024 | 2 | 2024 |
Task-adaptive clustering for semi-supervised few-shot classification J Seo, SW Yoon, J Moon arXiv preprint arXiv:2003.08221, 2020 | 2 | 2020 |
Meta-Learner with Linear Nulling SW Yoon, J Seo, J Moon arXiv preprint arXiv:1806.01010, 2018 | 2 | 2018 |