Prati
Daniel Scheliga
Daniel Scheliga
Potvrđena adresa e-pošte na tu-ilmenau.de
Naslov
Citirano
Citirano
Godina
Precode-a generic model extension to prevent deep gradient leakage
D Scheliga, P Mäder, M Seeland
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2022
552022
Dropout is not all you need to prevent gradient leakage
D Scheliga, P Mäder, M Seeland
Proceedings of the AAAI Conference on Artificial Intelligence 37 (8), 9733-9741, 2023
132023
Privacy preserving federated learning with convolutional variational bottlenecks
D Scheliga, P Mäder, M Seeland
arXiv preprint arXiv:2309.04515, 2023
52023
Combining Variational Modeling with Partial Gradient Perturbation to Prevent Deep Gradient Leakage
D Scheliga, P Mäder, M Seeland
arXiv preprint arXiv:2208.04767, 2022
32022
Feature-based Dataset Fingerprinting for Clustered Federated Learning on Medical Image Data
D Scheliga, P Mäder, M Seeland
Applied Artificial Intelligence 38 (1), 2394756, 2024
12024
Collaboration Management for Federated Learning
M Schlegel, D Scheliga, KU Sattler, M Seeland, P Mäder
2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW …, 2024
2024
Model-based data generation for the evaluation of functional reliability and resilience of distributed machine learning systems against abnormal cases
R Altschaffel
Deutsche Nationalbibliothek, 2023
2023
PRECODE-A Generic Model Extension to Prevent Deep Gradient Leakage–Supplementary Material–
D Scheliga, P Mäder, M Seeland
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–8