Prati
Gabriel Loaiza-Ganem
Gabriel Loaiza-Ganem
Layer 6 AI
Potvrđena adresa e-pošte na layer6.ai - Početna stranica
Naslov
Citirano
Citirano
Godina
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
G Loaiza-Ganem, JP Cunningham
Advances in Neural Information Processing Systems 32, 2019
1032019
Uses and abuses of the cross-entropy loss: Case studies in modern deep learning
E Gordon-Rodriguez, G Loaiza-Ganem, G Pleiss, JP Cunningham
PMLR, 2020
101*2020
Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models
G Stein, JC Cresswell, R Hosseinzadeh, Y Sui, BL Ross, V Villecroze, ...
arXiv preprint arXiv:2306.04675, 2023
702023
Verifying the Union of Manifolds Hypothesis for Image Data
BCA Brown, AL Caterini, BL Ross, JC Cresswell, G Loaiza-Ganem
International Conference on Learning Representations, 2023
57*2023
Rectangular flows for manifold learning
AL Caterini, G Loaiza-Ganem, G Pleiss, JP Cunningham
Advances in Neural Information Processing Systems 34, 30228-30241, 2021
452021
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
JC Cresswell, BL Ross, G Loaiza-Ganem, H Reyes-Gonzalez, M Letizia, ...
arXiv preprint arXiv:2211.15380, 2022
40*2022
Invertible gaussian reparameterization: Revisiting the gumbel-softmax
A Potapczynski, G Loaiza-Ganem, JP Cunningham
Advances in Neural Information Processing Systems 33, 12311-12321, 2020
332020
The continuous categorical: a novel simplex-valued exponential family
E Gordon-Rodriguez, G Loaiza-Ganem, J Cunningham
International Conference on Machine Learning, 3637-3647, 2020
322020
Maximum entropy flow networks
G Loaiza-Ganem, Y Gao, JP Cunningham
International Conference on Learning Representations, 2017
302017
Diagnosing and fixing manifold overfitting in deep generative models
G Loaiza-Ganem, BL Ross, JC Cresswell, AL Caterini
Transactions on Machine Learning Research, 2022
262022
Entropic issues in likelihood-based ood detection
AL Caterini, G Loaiza-Ganem
I (Still) Can't Believe It's Not Better! Workshop at NeurIPS 2021, 21-26, 2022
222022
A geometric view of data complexity: Efficient local intrinsic dimension estimation with diffusion models
H Kamkari, BL Ross, R Hosseinzadeh, JC Cresswell, G Loaiza-Ganem
arXiv preprint arXiv:2406.03537, 2024
122024
Deep generative models through the lens of the manifold hypothesis: A survey and new connections
G Loaiza-Ganem, BL Ross, R Hosseinzadeh, AL Caterini, JC Cresswell
arXiv preprint arXiv:2404.02954, 2024
112024
Deep random splines for point process intensity estimation of neural population data
G Loaiza-Ganem, S Perkins, K Schroeder, M Churchland, ...
Advances in Neural Information Processing Systems 32, 2019
112019
Neural implicit manifold learning for topology-aware density estimation
BL Ross, G Loaiza-Ganem, AL Caterini, JC Cresswell
Transactions on Machine Learning Research, 2022
10*2022
A geometric explanation of the likelihood OOD detection paradox
H Kamkari, BL Ross, JC Cresswell, AL Caterini, RG Krishnan, ...
arXiv preprint arXiv:2403.18910, 2024
92024
Denoising Deep Generative Models
G Loaiza-Ganem, BL Ross, L Wu, JP Cunningham, JC Cresswell, ...
PMLR, 2023
82023
Bayesian nonparametrics for offline skill discovery
V Villecroze, H Braviner, P Naderian, C Maddison, G Loaiza-Ganem
International Conference on Machine Learning, 22284-22299, 2022
82022
Calochallenge 2022: A community challenge for fast calorimeter simulation
C Krause, MF Giannelli, G Kasieczka, B Nachman, D Salamani, D Shih, ...
arXiv preprint arXiv:2410.21611, 2024
72024
A geometric framework for understanding memorization in generative models
BL Ross, H Kamkari, T Wu, R Hosseinzadeh, Z Liu, G Stein, JC Cresswell, ...
arXiv preprint arXiv:2411.00113, 2024
52024
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20