Prati
Martin Jullum
Martin Jullum
Norwegian Computing Center
Potvrđena adresa e-pošte na nr.no - Početna stranica
Naslov
Citirano
Citirano
Godina
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K Aas, M Jullum, A Løland
Artificial Intelligence, 2019
8062019
Detecting money laundering transactions with machine learning
M Jullum, A Løland, RB Huseby, G Ånonsen, J Lorentzen
Journal of Money Laundering Control 23 (1), 173-186, 2020
2042020
A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties
M Jullum, O Kolbjørnsen
Geophysics 81 (3), R75-R87, 2016
582016
Parametric or nonparametric: The FIC approach
M Jullum, NL Hjort
Statistica Sinica, 951-981, 2017
362017
Explaining predictive models with mixed features using Shapley values and conditional inference trees
A Redelmeier, M Jullum, K Aas
Machine Learning and Knowledge Extraction: 4th IFIP TC 5, TC 12, WG 8.4, WG …, 2020
312020
Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features
LHB Olsen, IK Glad, M Jullum, K Aas
Journal of machine learning research 23 (213), 1-51, 2022
272022
Explaining predictive models using Shapley values and non-parametric vine copulas
K Aas, T Nagler, M Jullum, A Løland
Dependence modeling 9 (1), 62-81, 2021
262021
shapr: An R-package for explaining machine learning models with dependence-aware Shapley values
N Sellereite, M Jullum
Journal of Open Source Software, 2020
252020
What price semiparametric Cox regression?
M Jullum, NL Hjort
Lifetime data analysis 25 (3), 406-438, 2019
252019
groupShapley: Efficient prediction explanation with Shapley values for feature groups
M Jullum, A Redelmeier, K Aas
arXiv preprint arXiv:2106.12228, 2021
232021
Comparison of contextual importance and utility with lime and Shapley values
K Främling, M Westberg, M Jullum, M Madhikermi, A Malhi
International Workshop on Explainable, Transparent Autonomous Agents and …, 2021
232021
Bayesian AVO inversion to rock properties using a local neighborhood in a spatial prior model
O Kolbj⊘ rnsen, A Buland, R Hauge, P R⊘ e, M Jullum, RW Metcalfe, ...
The Leading Edge 35 (5), 431-436, 2016
232016
A comparative study of methods for estimating model-agnostic Shapley value explanations
LHB Olsen, IK Glad, M Jullum, K Aas
Data Mining and Knowledge Discovery 38 (4), 1782-1829, 2024
19*2024
MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations for tabular data
A Redelmeier, M Jullum, K Aas, A Løland
Data Mining and Knowledge Discovery 38 (4), 1830-1861, 2024
15*2024
Efficient and simple prediction explanations with groupShapley: A practical perspective
M Jullum, A Redelmeier, K Aas
2nd Italian Workshop on Explainable Artificial Intelligence 3014, 28-43, 2021
92021
Explaining individual predictions when features are dependent: More accurate approximations to shapley values (2019)
K Aas, M Jullum, A Løland
arXiv preprint arXiv:1903.10464, 1903
81903
Finding money launderers using heterogeneous graph neural networks
F Johannessen, M Jullum
arXiv preprint arXiv:2307.13499, 2023
72023
Pairwise local Fisher and naive Bayes: Improving two standard discriminants
H Otneim, M Jullum, D Tjøstheim
Journal of Econometrics 216 (1), 284-304, 2020
72020
Some recent trends in embeddings of time series and dynamic networks
D Tjøstheim, M Jullum, A Løland
Journal of Time Series Analysis 44 (5-6), 686-709, 2023
62023
Estimating seal pup production in the Greenland Sea by using Bayesian hierarchical modelling
M Jullum, T Thorarinsdottir, FE Bachl
Journal of the Royal Statistical Society: Series C (Applied Statistics) 69 …, 2020
52020
Sustav trenutno ne može provesti ovu radnju. Pokušajte ponovo kasnije.
Članci 1–20