Követés
Nikola Konstantinov
Nikola Konstantinov
Tenure-track faculty, INSAIT
E-mail megerősítve itt: insait.ai - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
The convergence of sparsified gradient methods
D Alistarh, T Hoefler, M Johansson, N Konstantinov, S Khirirat, C Renggli
Advances in Neural Information Processing Systems, 5973-5983, 2018
6142018
Robust Learning from Untrusted Sources
N Konstantinov, C Lampert
International Conference on Machine Learning (ICML), 2019
852019
The convergence of stochastic gradient descent in asynchronous shared memory
D Alistarh, C De Sa, N Konstantinov
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing …, 2018
452018
Data Leakage in Federated Averaging
DI Dimitrov, M Balunovic, N Konstantinov, M Vechev
Transactions on Machine Learning Research (TMLR), 2022
302022
Fairness-aware PAC learning from corrupted data
N Konstantinov, CH Lampert
Journal of Machine Learning Research 23 (160), 1-60, 2022
302022
On the Sample Complexity of Adversarial Multi-Source PAC Learning
N Konstantinov, E Frantar, D Alistarh, CH Lampert
International Conference on Machine Learning (ICML), 2020
252020
On the Impossibility of Fairness-Aware Learning from Corrupted Data
N Konstantinov, CH Lampert
Algorithmic Fairness through the Lens of Causality and Robustness workshop …, 2022
132022
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization
FE Dorner, N Konstantinov, G Pashaliev, M Vechev
Conference on Neural Information Processing Systems (NeurIPS), 2023, 2023
122023
FLEA: Provably robust fair multisource learning from unreliable training data
E Iofinova, N Konstantinov, CH Lampert
Transactions on Machine Learning Research (TMLR), 2022
122022
Fairness Through Regularization for Learning to Rank
N Konstantinov, CH Lampert
arXiv preprint arXiv:2102.05996, 2021
112021
Strategic Data Sharing between Competitors
N Tsoy, N Konstantinov
Conference on Neural Information Processing Systems (NeurIPS), 2023, 2023
92023
COMPL-AI Framework: A Technical Interpretation and LLM Benchmarking Suite for the EU Artificial Intelligence Act
P Guldimann, A Spiridonov, R Staab, N Jovanović, M Vero, V Vechev, ...
arXiv preprint arXiv:2410.07959, 2024
72024
Human-Guided Fair Classification for Natural Language Processing
FE Dorner, M Peychev, N Konstantinov, N Goel, E Ash, M Vechev
International Conference on Learning Representations (ICLR), 2023, 2022
72022
Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data
N Tsoy, N Konstantinov
arXiv preprint arXiv:2405.17299, 2024
32024
Robustness and fairness in machine learning
NH Konstantinov
22022
Provable Mutual Benefits from Federated Learning in Privacy-Sensitive Domains
N Tsoy, A Mihalkova, T Todorova, N Konstantinov
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2024
12024
On the Impact of Performative Risk Minimization for Binary Random Variables
N Tsoy, I Kirev, N Rahimiyazdi, N Konstantinov
arXiv preprint arXiv:2502.02331, 2025
2025
Incentivizing Truthful Collaboration in Heterogeneous Federated Learning
D Chakarov, N Tsoy, K Minchev, N Konstantinov
arXiv preprint arXiv:2412.00980, 2024
2024
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–18