Követés
Stephen Roller
Stephen Roller
Google DeepMind
E-mail megerősítve itt: google.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Opt: Open pre-trained transformer language models
S Zhang, S Roller, N Goyal, M Artetxe, M Chen, S Chen, C Dewan, ...
arXiv preprint arXiv:2205.01068, 2022
3651*2022
Recipes for building an open-domain chatbot
S Roller, E Dinan, N Goyal, D Ju, M Williamson, Y Liu, J Xu, M Ott, ...
arXiv preprint arXiv:2004.13637, 2020
11312020
Wizard of wikipedia: Knowledge-powered conversational agents
E Dinan, S Roller, K Shuster, A Fan, M Auli, J Weston
arXiv preprint arXiv:1811.01241, 2018
10372018
Neural text generation with unlikelihood training
S Welleck, I Kulikov, S Roller, E Dinan, K Cho, J Weston
arXiv preprint arXiv:1908.04319, 2019
5922019
Supervised Text-based Geolocation Using Language Models on an Adaptive Grid
S Roller, M Speriosu, S Rallapalli, B Wing, J Baldridge
2972012
Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage
K Shuster, J Xu, M Komeili, D Ju, EM Smith, S Roller, M Ung, M Chen, ...
arXiv preprint arXiv:2208.03188, 2022
2792022
What makes a good conversation? how controllable attributes affect human judgments
A See, S Roller, D Kiela, J Weston
arXiv preprint arXiv:1902.08654, 2019
2642019
Human-level play in the game of Diplomacy by combining language models with strategic reasoning
Meta Fundamental AI Research Diplomacy Team (FAIR)†, A Bakhtin, ...
Science 378 (6624), 1067-1074, 2022
2602022
Inclusive yet selective: Supervised distributional hypernymy detection
S Roller, K Erk, G Boleda
Proceedings of COLING 2014, the 25th international conference on …, 2014
2262014
Don't say that! making inconsistent dialogue unlikely with unlikelihood training
M Li, S Roller, I Kulikov, S Welleck, YL Boureau, K Cho, J Weston
arXiv preprint arXiv:1911.03860, 2019
2072019
Hash layers for large sparse models
S Roller, S Sukhbaatar, J Weston
advances in neural information processing systems 34, 17555-17566, 2021
1962021
Acute-eval: Improved dialogue evaluation with optimized questions and multi-turn comparisons
M Li, J Weston, S Roller
arXiv preprint arXiv:1909.03087, 2019
1792019
Hearst patterns revisited: Automatic hypernym detection from large text corpora
S Roller, D Kiela, M Nickel
arXiv preprint arXiv:1806.03191, 2018
1712018
MGNC-CNN: A simple approach to exploiting multiple word embeddings for sentence classification
Y Zhang, S Roller, B Wallace
arXiv preprint arXiv:1603.00968, 2016
1482016
A multimodal LDA model integrating textual, cognitive and visual modalities
S Roller, SS Im Walde
Proceedings of the 2013 Conference on Empirical Methods in Natural Language …, 2013
1212013
Language models that seek for knowledge: Modular search & generation for dialogue and prompt completion
K Shuster, M Komeili, L Adolphs, S Roller, A Szlam, J Weston
arXiv preprint arXiv:2203.13224, 2022
1192022
Scaling laws for generative mixed-modal language models
A Aghajanyan, L Yu, A Conneau, WN Hsu, K Hambardzumyan, S Zhang, ...
International Conference on Machine Learning, 265-279, 2023
922023
Relations such as hypernymy: Identifying and exploiting hearst patterns in distributional vectors for lexical entailment
S Roller, K Erk
arXiv preprint arXiv:1605.05433, 2016
922016
Inferring concept hierarchies from text corpora via hyperbolic embeddings
M Le, S Roller, L Papaxanthos, D Kiela, M Nickel
arXiv preprint arXiv:1902.00913, 2019
882019
The dialogue dodecathlon: Open-domain knowledge and image grounded conversational agents
K Shuster, D Ju, S Roller, E Dinan, YL Boureau, J Weston
arXiv preprint arXiv:1911.03768, 2019
812019
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20