Követés
Dhanasekar Sundararaman
Dhanasekar Sundararaman
Microsoft
E-mail megerősítve itt: duke.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
How much is my car worth? A methodology for predicting used cars’ prices using random forest
N Pal, P Arora, P Kohli, D Sundararaman, SS Palakurthy
Advances in Information and Communication Networks: Proceedings of the 2018 …, 2019
902019
Methods for Numeracy-Preserving Word Embeddings
D Sundararaman, S Si, V Subramanian, G Wang, D Hazarika, L Carin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020
552020
Syntax-infused transformer and bert models for machine translation and natural language understanding
D Sundararaman, V Subramanian, G Wang, S Si, D Shen, D Wang, ...
arXiv preprint arXiv:1911.06156, 2019
342019
Learning compressed sentence representations for on-device text processing
D Shen, P Cheng, D Sundararaman, X Zhang, Q Yang, M Tang, ...
Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019
322019
Shijing Si, Dinghan Shen, Dong Wang, and Lawrence Carin. 2019. Syntax-infused transformer and bert models for machine translation and natural language understanding
D Sundararaman, V Subramanian
arXiv preprint arXiv:1911.06156, 2019
212019
Shijing Si, Dinghan Shen, Dong Wang, and Lawrence Carin. Syntax-infused transformer and bert models for machine translation and natural language understanding
D Sundararaman, V Subramanian
arXiv preprint arXiv:1911.06156, 2019
132019
Syntactic Knowledge-Infused Transformer and BERT Models.
D Sundararaman, V Subramanian, G Wang, S Si, D Shen, D Wang, ...
CIKM Workshops, 2021
122021
Digital Nations–Smart Cities, Innovation, and Sustainability: 16th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2017, Delhi, India, November 21–23 …
AK Kar, PV Ilavarasan, MP Gupta, YK Dwivedi, M Mäntymäki, M Janssen, ...
Springer, 2017
92017
Improving Downstream Task Performance by Treating Numbers as Entities
D Sundararaman, V Subramanian, G Wang, L Xu, L Carin
Proceedings of the 31st ACM International Conference on Information …, 2022
8*2022
What BERT Based Language Models Learn in Spoken Transcripts: An Empirical Study
A Kumar, MN Sundararaman, J Vepa
arXiv preprint arXiv:2109.09105, 2021
72021
How do lexical semantics affect translation? An empirical study
V Subramanian, D Sundararaman
arXiv preprint arXiv:2201.00075, 2021
62021
Twigraph: discovering and visualizing influential words between Twitter profiles
D Sundararaman, S Srinivasan
Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK …, 2017
62017
Implementing MLOps in the Enterprise
Y Haviv, N Gift
" O'Reilly Media, Inc.", 2023
52023
Exploring Gender Bias in Retrieval Models
D Sundararaman, V Subramanian
arXiv preprint arXiv:2208.01755, 2022
5*2022
Syntax-infused transformer and BERT models for machine translation and natural language understanding
S Dhanasekar, S Vivek, W Guoyin, S Shijing, S Dinghan, W Dong, ...
arXiv preprint arXiv: 1911. 06156v1, 2019
32019
Customizable Vehicle Tracking with Intelligent Prediction System
D Sundararaman, G Ravichandran, R Jagadeesh, S Sasirekha, ...
Conference on e-Business, e-Services and e-Society, 298-310, 2017
32017
An analysis of nonimmigrant work visas in the USA using Machine Learning
D Sundararaman, N Pal, AK Misraa
Int. J. Comput. Sci. Secur.(IJCSS) 6, 2017
32017
Learning Task Sampling Policy for Multitask Learning
D Sundararaman, H Tsai, KH Lee, I Turc, L Carin
Findings of the Association for Computational Linguistics: EMNLP 2021, 4410-4415, 2021
22021
Evaluating Hallucination in Large Vision-Language Models based on Context-Aware Object Similarities
S Datta, D Sundararaman
arXiv preprint arXiv:2501.15046, 2025
2025
Pseudo-OOD training for robust language models
D Sundararaman, N Mehta, L Carin
arXiv preprint arXiv:2210.09132, 2022
2022
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20