Követés
Daniel M. Ziegler
Daniel M. Ziegler
Redwood Research
E-mail megerősítve itt: rdwrs.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Language models are few-shot learners
T Brown, B Mann, N Ryder, M Subbiah, JD Kaplan, P Dhariwal, ...
Advances in neural information processing systems 33, 1877-1901, 2020
405422020
Learning to summarize with human feedback
N Stiennon, L Ouyang, J Wu, D Ziegler, R Lowe, C Voss, A Radford, ...
Advances in neural information processing systems 33, 3008-3021, 2020
19292020
Fine-tuning language models from human preferences
DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ...
arXiv preprint arXiv:1909.08593, 2019
15722019
Scaling laws for autoregressive generative modeling
T Henighan, J Kaplan, M Katz, M Chen, C Hesse, J Jackson, H Jun, ...
arXiv preprint arXiv:2010.14701, 2020
3922020
Using Crash Hoare logic for certifying the FSCQ file system
H Chen, D Ziegler, T Chajed, A Chlipala, MF Kaashoek, N Zeldovich
Proceedings of the 25th Symposium on Operating Systems Principles, 18-37, 2015
3342015
Recursively summarizing books with human feedback
J Wu, L Ouyang, DM Ziegler, N Stiennon, R Lowe, J Leike, P Christiano
arXiv preprint arXiv:2109.10862, 2021
2812021
Language models are few-shot learners
B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, ...
arXiv preprint arXiv:2005.14165 1, 3, 2020
2792020
Language Models are Few-Shot Learners. 2020. doi: 10.48550
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
arxiv 1, 2005
2672005
Language models are few-shot learners (arXiv: 2005.14165). arXiv
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
1792005
Sleeper agents: Training deceptive llms that persist through safety training
E Hubinger, C Denison, J Mu, M Lambert, M Tong, M MacDiarmid, ...
arXiv preprint arXiv:2401.05566, 2024
1382024
Language models are few-shot learners. CoRR abs/2005.14165 (2020)
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
URL: https://arxiv. org/abs/2005.14165, 2005
1192005
& Amodei, D.(2020)
TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ...
Language models are few-shot learners, 1877-1901, 2005
772005
Fine-tuning language models from human preferences, 2020
DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ...
URL https://arxiv. org/abs, 14, 1909
631909
Adversarial training for high-stakes reliability
D Ziegler, S Nix, L Chan, T Bauman, P Schmidt-Nielsen, T Lin, A Scherlis, ...
Advances in neural information processing systems 35, 9274-9286, 2022
552022
Fine-tuning language models from human preferences. arXiv
DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ...
arXiv preprint arXiv:1909.08593 10, 2019
512019
Specifying crash safety for storage systems
H Chen, D Ziegler, A Chlipala, MF Kaashoek, E Kohler, N Zeldovich
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015
262015
Learning to summarize from human feedback, 2022
N Stiennon, L Ouyang, J Wu, DM Ziegler, R Lowe, C Voss, A Radford, ...
URL https://arxiv. org/abs, 2009
252009
Certifying a file system using crash hoare logic: correctness in the presence of crashes
T Chajed, H Chen, A Chlipala, MF Kaashoek, N Zeldovich, D Ziegler
Communications of the ACM 60 (4), 75-84, 2017
172017
Recursively summarizing books with human feedback, 2021
J Wu, L Ouyang, DM Ziegler, N Stiennon, R Lowe, J Leike, P Christiano
URL https://arxiv. org/abs/2109.10862, 0
11
Arboral satisfaction: Recognition and LP approximation
ED Demaine, V Ganesan, V Kontsevoi, Q Liu, Q Liu, F Ma, O Nachum, ...
Information Processing Letters 127, 1-5, 2017
12017
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20