Követés
Konstantinos Patlatzoglou
Konstantinos Patlatzoglou
E-mail megerősítve itt: imperial.ac.uk
Cím
Hivatkozott rá
Hivatkozott rá
Év
Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of future cardiometabolic disease
L Pastika, A Sau, K Patlatzoglou, E Sieliwonczyk, AH Ribeiro, KA McGurk, ...
npj Digital Medicine 7 (1), 167, 2024
52024
Deep neural networks for automatic classification of anesthetic-induced unconsciousness
K Patlatzoglou, S Chennu, M Boly, Q Noirhomme, V Bonhomme, ...
Brain Informatics: International Conference, BI 2018, Arlington, TX, USA …, 2018
52018
Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: a model development and validation study
A Sau, L Pastika, E Sieliwonczyk, K Patlatzoglou, AH Ribeiro, KA McGurk, ...
The Lancet Digital Health 6 (11), e791-e802, 2024
42024
Generalized prediction of unconsciousness during propofol anesthesia using 3D convolutional neural networks
K Patlatzoglou, S Chennu, O Gosseries, V Bonhomme, A Wolff, S Laureys
2020 42nd Annual International Conference of the IEEE Engineering in …, 2020
42020
Prognostic significance and associations of neural network–derived electrocardiographic features
A Sau, AH Ribeiro, KA McGurk, L Pastika, N Bajaj, M Gurnani, ...
Circulation: Cardiovascular Quality and Outcomes 17 (12), e010602, 2024
32024
Artificial Intelligence–Enhanced Electrocardiography for Prediction of Incident Hypertension
A Sau, J Barker, L Pastika, E Sieliwonczyk, K Patlatzoglou, KA McGurk, ...
JAMA cardiology, 2025
12025
Deep Learning for Electrophysiological Investigation and Estimation of Anesthetic-Induced Unconsciousness
K Patlatzoglou
University of Kent, 2022
12022
A comparison of artificial intelligence–enhanced electrocardiography approaches for the prediction of time to mortality using electrocardiogram images
A Sau, B Zeidaabadi, K Patlatzoglou, L Pastika, AH Ribeiro, E Sabino, ...
European Heart Journal-Digital Health, ztae090, 2024
2024
Machine Learning of ECG Waveforms for Outcomes After Left Bundle Branch Area Pacing in Heart Failure
K Bilchick, D Bivona, K Patlatzoglou, FS Ng, K Ellenbogen, A Pillai
Circulation 150 (Suppl_1), A4140782-A4140782, 2024
2024
Artificial Intelligence-Enabled Electrocardiography For The Prediction of Future Type 2 Diabetes Mellitus
L Pastika, K Patlatzoglou, E Sieliwonczyk, J Barker, B Zeidaabadi, ...
Circulation 150 (Suppl_1), A4137169-A4137169, 2024
2024
Unsupervised feature extraction using deep learning empowers discovery of genetic determinants of the electrocardiogram
E Sieliwonczyk, A Sau, K Patlatzoglou, KA McGurk, L Pastika, PK Thami, ...
medRxiv, 2024.10. 07.24314993, 2024
2024
Prediction of mortality, future arrhythmia and cardiovascular disease: an artificial intelligence-enhanced electrocardiography platform
A Sau, L Pastika, E Sieliwonczyk, K Patlatzoglou, AH Ribeiro, K Mcgurk, ...
European Heart Journal 45 (Supplement_1), ehae666. 3474, 2024
2024
Unsupervised electrocardiogram feature extraction using deep learning empowers discovery of genetic and phenotypic determinants of cardiac electrophysiology
E Sieliwonczyk, A Sau, K Patlatzoglou, K Mcgurk, L Pastika, P Thami, ...
European Heart Journal 45 (Supplement_1), ehae666. 3441, 2024
2024
Digitisation of electrocardiographic images enable artificial intelligence-based mortality prediction
K Patlatzoglou, A Sau, B Zeidaabadi, L Pastika, N Peters, D Kramer, ...
European Heart Journal 45 (Supplement_1), ehae666. 3473, 2024
2024
Siamese neural networks can identify subjects from anonymised ECGs
K Macierzanka, A Sau, K Patlatzoglou, L Pastika, E Sieliwonczyk, ...
European Heart Journal 45 (Supplement_1), ehae666. 3460, 2024
2024
Artificial intelligence-enhanced electrocardiography predicts 10-year risk of atherosclerotic cardiovascular disease
H Zhang, A Sau, K Patlatzoglou, L Pastika, E Sieliwonczyk, M Gurnani, ...
European Heart Journal 45 (Supplement_1), ehae666. 3499, 2024
2024
Sex related cardiovascular risk is non-dichotomous: artificial intelligence enhanced electrocardiography reveals continuum of risk in females
A Sau, E Sieliwonczyk, K Patlatzoglou, L Pastika, K Mcgurk, AH Ribeiro, ...
European Heart Journal 45 (Supplement_1), ehae666. 3462, 2024
2024
Utilizing unsupervised machine learning to uncover novel phenogroups within the broad QRS complex
M Gurnani, A Sau, K Patlatzoglou, J Barker, L Pastika, NS Peters, ...
European Heart Journal 45 (Supplement_1), ehae666. 333, 2024
2024
Accurate detection of dilated cardiomyopathy onset through machine learning predictions from ECG data
E Sieliwonczyk, A Sau, Y Liang, K Patlatzoglou, K Mcgurk, E Jennings, ...
European Heart Journal 45 (Supplement_1), ehae666. 956, 2024
2024
224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus
L Pastika, A Sau, E Sieliwonczyk, K Patlatzoglou, KA McGurk, S Khan, ...
Heart 110 (Suppl 3), A232-A232, 2024
2024
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20