Követés
Yingxu Song
Yingxu Song
东华理工大学
E-mail megerősítve itt: ecut.edu.cn
Cím
Hivatkozott rá
Hivatkozott rá
Év
Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir Area (China)
Y Song, R Niu, S Xu, R Ye, L Peng, T Guo, S Li, T Chen
ISPRS International Journal of Geo-Information 8 (1), 4, 2018
912018
Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China
H Zhang, Y Song, S Xu, Y He, Z Li, X Yu, Y Liang, W Wu, Y Wang
Computers & Geosciences 158, 104966, 2022
822022
Study on landslide susceptibility mapping based on rock–soil characteristic factors
X Yu, K Zhang, Y Song, W Jiang, J Zhou
Scientific reports 11 (1), 15476, 2021
432021
Evaluating landslide susceptibility using sampling methodology and multiple machine learning models
Y Song, D Yang, W Wu, X Zhang, J Zhou, Z Tian, C Wang, Y Song
ISPRS International Journal of Geo-Information 12 (5), 197, 2023
202023
A comparative study of shallow machine learning models and deep learning models for landslide susceptibility assessment based on imbalanced data
S Xu, Y Song, X Hao
Forests 13 (11), 1908, 2022
202022
Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants
L Yao, M Xu, Y Liu, R Niu, X Wu, Y Song
Ecological Indicators 158, 111416, 2024
162024
Synergizing multiple machine learning techniques and remote sensing for advanced landslide susceptibility assessment: a case study in the Three Gorges Reservoir Area
Y Song, Y Li, Y Zou, R Wang, Y Liang, S Xu, Y He, X Yu, W Wu
Environmental Earth Sciences 83 (8), 227, 2024
52024
Dynamic hazard assessment of rainfall-induced landslides using gradient boosting decision tree with Google Earth Engine in Three Gorges Reservoir Area, China
K Yang, R Niu, Y Song, J Dong, H Zhang, J Chen
Water 16 (12), 1638, 2024
42024
Landslide susceptibility assessment through multi-model stacking and meta-learning in Poyang County, China
Y Song, Y Song, C Wang, L Wu, W Wu, Y Li, S Li, A Chen
Geomatics, Natural Hazards and Risk 15 (1), 2354499, 2024
32024
Enhancing landslide detection with SBConv-optimized U-Net architecture based on multisource remote sensing data
Y Song, Y Zou, Y Li, Y He, W Wu, R Niu, S Xu
Land 13 (6), 835, 2024
22024
An optimized non-landslide sampling method for Landslide susceptibility evaluation using machine learning models
S Xu, Y Song, P Lu, G Mu, K Yang, S Wang
Natural Hazards, 1-28, 2024
12024
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–11