Követés
Jaeyun Kim
Jaeyun Kim
Soonchynhyang University
E-mail megerősítve itt: sch.ac.kr
Cím
Hivatkozott rá
Hivatkozott rá
Év
Using AHP to determine intangible priority factors for technology transfer adoption
S Lee, W Kim, YM Kim, KJ Oh
Expert Systems with Applications 39 (7), 6388-6395, 2012
1472012
A machine learning trading system for the stock market based on N-period Min-Max labeling using XGBoost
Y Han, J Kim, D Enke
Expert Systems with Applications 211, 118581, 2023
772023
Using genetic algorithm to support clustering-based portfolio optimization by investor information
D Cheong, YM Kim, HW Byun, KJ Oh, TY Kim
Applied Soft Computing 61, 593-602, 2017
772017
An intelligent hybrid trading system for discovering trading rules for the futures market using rough sets and genetic algorithms
Y Kim, W Ahn, KJ Oh, D Enke
Applied Soft Computing 55, 127-140, 2017
732017
Developing a rule change trading system for the futures market using rough set analysis
Y Kim, D Enke
Expert Systems with Applications 59, 165-173, 2016
682016
The prioritization and verification of IT emerging technologies using an analytic hierarchy process and cluster analysis
S Lee, W Kim, YM Kim, HY Lee, KJ Oh
Technological forecasting and social change 87, 292-304, 2014
552014
The framework for factors affecting technology transfer for suppliers and buyers of technology in Korea
S Lee, BS Kim, Y Kim, W Kim, W Ahn
Technology Analysis & Strategic Management 30 (2), 172-185, 2018
452018
Developing an individual glucose prediction model using recurrent neural network
DY Kim, DS Choi, J Kim, SW Chun, HW Gil, NJ Cho, AR Kang, J Woo
Sensors 20 (22), 6460, 2020
382020
Using deep learning to develop a stock price prediction model based on individual investor emotions
J Chun, J Ahn, Y Kim, S Lee
Journal of Behavioral Finance 22 (4), 480-489, 2021
342021
Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability
JJ Ahn, YM Kim, K Yoo, J Park, KJ Oh
Environmental monitoring and assessment 184, 6637-6645, 2012
312012
A study on KOSPI 200 direction forecasting using XGBoost model
DW Hah, YM Kim, JJ Ahn
The Korean Data & Information Science Society 30 (3), 655-669, 2019
252019
Using neural networks to forecast volatility for an asset allocation strategy based on the target volatility
Y Kim, D Enke
Procedia Computer Science 95, 281-286, 2016
172016
Instance selection using genetic algorithms for an intelligent ensemble trading system
Y Kim, D Enke
Procedia computer science 114, 465-472, 2017
132017
A dynamic target volatility strategy for asset allocation using artificial neural networks
Y Kim, D Enke
The Engineering Economist 63 (4), 273-290, 2018
122018
Intelligent ensemble deep learning system for blood glucose prediction using genetic algorithms
DY Kim, DS Choi, AR Kang, J Woo, Y Han, SW Chun, J Kim
Complexity 2022 (1), 7902418, 2022
112022
Forecasting the KOSPI 200 stock index based on LSTM Autoencoder
JH Yang, Y Kim, KJ Oh
Quantitative Bio-Science 39 (2), 101-109, 2020
82020
A relative value trading system based on a correlation and rough set analysis for the foreign exchange futures market
S Lee, D Enke, Y Kim
Engineering Applications of Artificial Intelligence 61, 47-56, 2017
82017
Intelligent stock market instability index: Application to the Korean stock market
YM Kim, SK Han, TY Kim, KJ Oh, Z Luo, C Kim
Intelligent Data Analysis 19 (4), 879-895, 2015
52015
Using change-point detection to identify structural changes in stock market: application to Russell 2000
SY Jeon, HS Ryou, Y Kim, KJ Oh
Quantitative Bio-Science 39 (1), 61-69, 2020
42020
An intelligent early warning system for forecasting abnormal investment trends of foreign investors
KJ Oh, YM Kim
Journal of the Korean Data and Information Science Society 24 (2), 223-233, 2013
42013
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20