Követés
Oliver Hinder
Oliver Hinder
Assistant Professor, Industrial Engineering Department, University of Pittsburgh
E-mail megerősítve itt: pitt.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Accelerated methods for nonconvex optimization
Y Carmon, JC Duchi, O Hinder, A Sidford
SIAM Journal on Optimization 28 (2), 1751-1772, 2018
3672018
Lower bounds for finding stationary points I
Y Carmon, JC Duchi, O Hinder, A Sidford
Mathematical Programming 184 (1), 71-120, 2020
3642020
“Convex until proven guilty”: Dimension-free acceleration of gradient descent on non-convex functions
Y Carmon, JC Duchi, O Hinder, A Sidford
International conference on machine learning, 654-663, 2017
1802017
Near-optimal methods for minimizing star-convex functions and beyond
O Hinder, A Sidford, N Sohoni
Conference on learning theory, 1894-1938, 2020
942020
Lower bounds for finding stationary points II: first-order methods
Y Carmon, JC Duchi, O Hinder, A Sidford
Mathematical Programming 185 (1), 315-355, 2021
922021
Practical large-scale linear programming using primal-dual hybrid gradient
D Applegate, M Díaz, O Hinder, H Lu, M Lubin, B O'Donoghue, W Schudy
Advances in Neural Information Processing Systems 34, 20243-20257, 2021
872021
Faster first-order primal-dual methods for linear programming using restarts and sharpness
D Applegate, O Hinder, H Lu, M Lubin
Mathematical Programming 201 (1), 133-184, 2023
622023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
M Ivgi, O Hinder, Y Carmon
International Conference on Machine Learning, 2023
592023
Making SGD Parameter-Free
Y Carmon, O Hinder
Conference on Learning Theory, 2360-2389, 2022
432022
A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness
O Hinder, A Mason
European Journal of Operations Research 262 (2), 411–423, 2017
262017
On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods
G Haeser, O Hinder, Y Ye
Mathematical Programming 186 (1), 257-288, 2021
242021
A one-phase interior point method for nonconvex optimization
O Hinder, Y Ye
arXiv preprint arXiv:1801.03072, 2018
222018
An efficient nonconvex reformulation of stagewise convex optimization problems
R Bunel, O Hinder, S Bhojanapalli, D Krishnamurthy
Advances in Neural Information Processing Systems 33, 2020
192020
Worst-case iteration bounds for log barrier methods on problems with nonconvex constraints
O Hinder, Y Ye
Mathematics of Operations Research 49 (4), 2402-2424, 2024
14*2024
Optimal diagonal preconditioning
Z Qu, W Gao, O Hinder, Y Ye, Z Zhou
Operations Research, 2024
142024
Cutting plane methods can be extended into nonconvex optimization
O Hinder
Conference On Learning Theory, 1451-1454, 2018
122018
Worst-case analysis of restarted primal-dual hybrid gradient on totally unimodular linear programs
O Hinder
Operations Research Letters 57, 107199, 2024
82024
The price of adaptivity in stochastic convex optimization
Y Carmon, O Hinder
Conference on Learning Theory, 2024
82024
Multi-BOWS: multi-fidelity multi-objective Bayesian optimization with warm starts for nanophotonic structure design
J Kim, M Li, Y Li, A Gómez, O Hinder, PW Leu
Digital Discovery 3 (2), 381-391, 2024
62024
Datasets and benchmarks for nanophotonic structure and parametric design simulations
J Kim, M Li, O Hinder, P Leu
Advances in Neural Information Processing Systems 36, 4685-4715, 2023
52023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20