Követés
Shangpeng Sun
Shangpeng Sun
Assistant Professor, McGill University, Canada
E-mail megerősítve itt: mcgill.ca - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
In-field high throughput phenotyping and cotton plant growth analysis using LiDAR
S Sun, C Li, AH Paterson, Y Jiang, R Xu, JS Robertson, JL Snider, ...
Frontiers in Plant Science 9, 16, 2018
1592018
In-field high-throughput phenotyping of cotton plant height using LiDAR
S Sun, C Li, AH Paterson
Remote Sensing 9 (4), 377, 2017
1292017
Aerial images and convolutional neural network for cotton bloom detection
R Xu, C Li, AH Paterson, Y Jiang, S Sun, JS Robertson
Frontiers in plant science 8, 2235, 2018
1122018
Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation
J Iqbal, R Xu, S Sun, C Li
Robotics 9 (2), 46, 2020
1092020
Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering
S Sun, C Li, PW Chee, AH Paterson, Y Jiang, R Xu, JS Robertson, ...
ISPRS Journal of Photogrammetry and Remote Sensing 160, 195-207, 2020
1082020
GPhenoVision: a ground mobile system with multi-modal imaging for field-based high throughput phenotyping of cotton
Y Jiang, C Li, JS Robertson, S Sun, R Xu, AH Paterson
Scientific reports 8 (1), 1213, 2018
912018
Image processing algorithms for infield single cotton boll counting and yield prediction
S Sun, C Li, AH Paterson, PW Chee, JS Robertson
Computers and electronics in agriculture 166, 104976, 2019
582019
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
Y Jiang, C Li, R Xu, S Sun, JS Robertson, AH Paterson
Plant methods 16, 1-17, 2020
562020
Quantitative analysis of cotton canopy size in field conditions using a consumer-grade RGB-D camera
Y Jiang, C Li, AH Paterson, S Sun, R Xu, J Robertson
Frontiers in plant science 8, 2233, 2018
462018
High resolution 3D terrestrial LiDAR for cotton plant main stalk and node detection
S Sun, C Li, PW Chee, AH Paterson, C Meng, J Zhang, P Ma, ...
Computers and electronics in agriculture 187, 106276, 2021
362021
Augmented reality for food quality assessment: Bridging the physical and digital worlds
JT Liberty, S Sun, C Kucha, AA Adedeji, G Agidi, MO Ngadi
Journal of Food Engineering 367, 111893, 2024
162024
Cotton plant part 3D segmentation and architectural trait extraction using point voxel convolutional neural networks
F Saeed, S Sun, J Rodriguez-Sanchez, J Snider, T Liu, C Li
Plant methods 19 (1), 33, 2023
152023
Fault diagnosis in railway track circuits using support vector machines
S Sun, H Zhao
2013 12th International Conference on Machine Learning and Applications 2 …, 2013
152013
Eff-3dpseg: 3d organ-level plant shoot segmentation using annotation-efficient deep learning
L Luo, X Jiang, Y Yang, ERA Samy, M Lefsrud, V Hoyos-Villegas, S Sun
Plant Phenomics 5, 0080, 2023
112023
The method of fault detection of compensation capacitor in jointless track circuit based on phase space reconstruction
SP Sun, HB Zhao
Journal of the China railway society 34 (10), 79-84, 2012
102012
Eff-3DPSeg: 3D organ-level plant shoot segmentation using annotation-efficient point clouds
L Luo, X Jiang, Y Yang, ERA Samy, M Lefsrud, V Hoyos-Villegas, S Sun
arXiv preprint arXiv:2212.10263, 2022
92022
Rapid determination of the roasting degree of cocoa beans by extreme learning machine (ELM)-based imaging analysis
Y Yang, AG Darwish, I El-Sharkawy, Q Zhu, S Sun, J Tan
Journal of Agriculture and Food Research 10, 100437, 2022
92022
3D computer vision and machine learning based technique for high throughput cotton boll mapping under field conditions
S Sun, C Li, A Paterson, Y Jiang, J Robertson
2018 ASABE Annual International Meeting, 1, 2018
92018
PEAMATL: A strategy for developing near-infrared spectral prediction models under domain shift using self-supervised transfer learning
Y Yang, S Sun, M Huang, Q Zhu
IEEE Transactions on Instrumentation and Measurement 72, 1-12, 2023
82023
Predictions of multiple food quality parameters using near-infrared spectroscopy with a novel multi-task genetic programming approach
Y Yang, S Sun, L Pan, M Huang, Q Zhu
Food Control 144, 109389, 2023
82023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20