Követés
Daogao Liu
Daogao Liu
E-mail megerősítve itt: uw.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Detecting pretraining data from large language models
W Shi, A Ajith, M Xia, Y Huang, D Liu, T Blevins, D Chen, L Zettlemoyer
ICLR 2024, 2023
2382023
Private convex optimization via exponential mechanism
S Gopi, YT Lee, D Liu
COLT 2022, 2022
662022
Private non-smooth erm and sco in subquadratic steps
J Kulkarni, YT Lee, D Liu
Advances in Neural Information Processing Systems 34, 4053-4064, 2021
62*2021
When Does Differentially Private Learning Not Suffer in High Dimensions?
X Li, D Liu, T Hashimoto, HA Inan, J Kulkarni, YT Lee, AG Thakurta
Neurips 2022, 2022
612022
Muse: Machine unlearning six-way evaluation for language models
W Shi, J Lee, Y Huang, S Malladi, J Zhao, A Holtzman, D Liu, ...
arXiv preprint arXiv:2407.06460, 2024
352024
Super-resolution and robust sparse continuous fourier transform in any constant dimension: Nearly linear time and sample complexity
Y Jin, D Liu, Z Song
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms …, 2023
21*2023
Pandora box problem with nonobligatory inspection: Hardness and approximation scheme
H Fu, J Li, D Liu
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 789-802, 2023
20*2023
Private Convex Optimization in General Norms
S Gopi, YT Lee, D Liu, R Shen, K Tian
SODA 2023, 2022
182022
Private (stochastic) non-convex optimization revisited: Second-order stationary points and excess risks
D Liu, A Ganesh, S Oh, A Guha Thakurta
Advances in Neural Information Processing Systems 36, 65618-65641, 2023
152023
NN-Adapter: Efficient Domain Adaptation for Black-Box Language Models
Y Huang, D Liu, Z Zhong, W Shi, YT Lee
arXiv preprint arXiv:2302.10879, 2023
152023
Resqueing parallel and private stochastic convex optimization
Y Carmon, A Jambulapati, Y Jin, YT Lee, D Liu, A Sidford, K Tian
FOCS 2023, 2023
152023
Algorithms and Adaptivity Gaps for Stochastic -TSP
H Jiang, J Li, D Liu, S Singla
ITCS 2020, 2019
152019
Algorithmic aspects of the log-Laplace transform and a non-Euclidean proximal sampler
S Gopi, YT Lee, D Liu, R Shen, K Tian
COLT 2023, 2023
142023
User-level differentially private stochastic convex optimization: Efficient algorithms with optimal rates
D Liu, H Asi
International Conference on Artificial Intelligence and Statistics, 4240-4248, 2024
112024
Better Private Algorithms for Correlation Clustering
D Liu
COLT 2022, 2022
92022
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
L Chua, B Ghazi, Y Huang, P Kamath, D Liu, P Manurangsi, A Sinha, ...
COLM 2024, 2024
82024
The Power of Sampling: Dimension-free Risk Bounds in Private ERM
YT Lee, D Liu, Z Lu
arXiv preprint arXiv:2105.13637, 2021
8*2021
Private gradient descent for linear regression: Tighter error bounds and instance-specific uncertainty estimation
G Brown, K Dvijotham, G Evans, D Liu, A Smith, A Thakurta
ICML 2024, 2024
42024
Augmentation with Projection: Towards an Effective and Efficient Data Augmentation Paradigm for Distillation
Z Wang, Y Wu, F Liu, D Liu, L Hou, H Yu, J Li, H Ji
ICLR 2023, 2022
42022
Private stochastic convex optimization with heavy tails: Near-optimality from simple reductions
H Asi, D Liu, K Tian
Advances in Neural Information Processing Systems 37, 59174-59215, 2025
32025
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20