Cikkek nyilvánosan hozzáférhető megbízással - Zdzislaw BrzezniakTovábbi információ
Sehol sem hozzáférhető: 4
Weak solutions of a stochastic Landau–Lifshitz–Gilbert equation driven by pure jump noise
Z Brzeźniak, U Manna
Communications in Mathematical Physics 371 (3), 1071-1129, 2019
Megbízások: Royal Society UK
Global solution of nonlinear stochastic heat equation with solutions in a Hilbert manifold
Z Brzeźniak, J Hussain
Stochastics and Dynamics 20 (06), 2040012, 2020
Megbízások: Australian Research Council
Global solution of nonlinear heat equation with solutions in a Hilbert manifold
Z Brzeźniak, J Hussain
Nonlinear Analysis 242, 113505, 2024
Megbízások: UK Engineering and Physical Sciences Research Council
IRREDUCIBILITY AND STRONG FELLER PROPERTY FOR STOCHASTIC EVOLUTION EQUATIONS IN BANACH SPACES.
Z Brzeźniak, PA Razafimandimby
Discrete & Continuous Dynamical Systems-Series B 21 (4), 2016
Megbízások: Austrian Science Fund
Valahol hozzáférhető: 54
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise
Z Brzeźniak, W Liu, J Zhu
Nonlinear Analysis: Real World Applications 17, 283-310, 2014
Megbízások: National Natural Science Foundation of China, German Research Foundation
Itô's formula in UMD Banach spaces and regularity of solutions of the Zakai equation
Z Brzeźniak, JMAM van Neerven, MC Veraar, L Weis
Journal of Differential Equations 245 (1), 30-58, 2008
Megbízások: German Research Foundation
Weak solutions of a stochastic Landau–Lifshitz–Gilbert equation
Z Brzeźniak, B Goldys, T Jegaraj
Applied Mathematics Research eXpress 2013 (1), 1-33, 2013
Megbízások: Australian Research Council
2D stochastic Navier–Stokes equations driven by jump noise
Z Brzeźniak, E Hausenblas, J Zhu
Nonlinear Analysis: Theory, Methods & Applications 79, 122-139, 2013
Megbízások: Austrian Science Fund
Maximal regularity for stochastic convolutions driven by Lévy processes
Z Brzeźniak, E Hausenblas
Probability theory and related fields 145 (3), 615-637, 2009
Megbízások: Austrian Science Fund
Stochastic reaction-diffusion equations driven by jump processes
Z Brzeźniak, E Hausenblas, PA Razafimandimby
Potential analysis 49, 131-201, 2018
Megbízások: Austrian Science Fund, National Research Foundation, South Africa
Large deviations and transitions between equilibria for stochastic Landau–Lifshitz–Gilbert equation
Z Brzeźniak, B Goldys, T Jegaraj
Archive for Rational Mechanics and Analysis 226, 497-558, 2017
Megbízások: Australian Research Council
Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces
Z Brzeźniak, M Ondreját
Megbízások: UK Engineering and Physical Sciences Research Council
Random attractors for stochastic 2D-Navier–Stokes equations in some unbounded domains
Z Brzeźniak, T Caraballo, JA Langa, Y Li, G Łukaszewicz, J Real
Journal of Differential Equations 255 (11), 3897-3919, 2013
Megbízások: UK Engineering and Physical Sciences Research Council, Government of Spain
Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space
Z Brzeźniak, F Hornung, L Weis
Probability Theory and Related Fields 174, 1273-1338, 2019
Megbízások: German Research Foundation
Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations
J Zhu, Z Brzeźniak, W Liu
SIAM Journal on Mathematical Analysis 51 (3), 2121-2167, 2019
Megbízások: National Natural Science Foundation of China
Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle
Z Brzeźniak, E Hausenblas, PA Razafimandimby
Stochastics and partial differential equations: analysis and computations 7 …, 2019
Megbízások: Austrian Science Fund, National Research Foundation, South Africa
Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise
Z Brzeźniak, S Cerrai, M Freidlin
Probability Theory and Related Fields 162 (3), 739-793, 2015
Megbízások: UK Engineering and Physical Sciences Research Council
Maximal inequalities for stochastic convolutions driven by compensated Poisson random measures in Banach spaces
J Zhu, Z Brzeźniak, E Hausenblas
Megbízások: Austrian Science Fund, National Natural Science Foundation of China
Martingale solutions for Stochastic Equation of Reaction Diffusion Type driven by Lévy noise or Poisson random measure
Z Brzezniak, E Hausenblas, P Razafimandimby
arXiv preprint arXiv:1010.5933 72, 2010
Megbízások: Austrian Science Fund
Stochastic nonparabolic dissipative systems modeling the flow of liquid crystals: Strong solution (mathematical analysis of incompressible flow)
Z Brzezniak, E Hausenblas, P Razafimandimby
数理解析研究所講究録 1875, 41-72, 2014
Megbízások: Austrian Science Fund
A publikációs és a finanszírozási adatokat számítógépes program határozza meg, automatikusan.