Ikuti
Abdulrahman Nahhas
Abdulrahman Nahhas
Research Associat at the Very Larg Business Application Lab, University of Magdeburg
Email yang diverifikasi di ovgu.de - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem
B Rolf, T Reggelin, A Nahhas, S Lang, M Müller
Procedia Manufacturing 42, 442-449, 2020
482020
Simulation and the emergency department overcrowding problem
A Nahhas, A Awaldi, T Reggelin
Procedia Engineering 178, 368-376, 2017
482017
Open-source discrete-event simulation software for applications in production and logistics: An alternative to commercial tools?
S Lang, T Reggelin, M Müller, A Nahhas
Procedia Computer Science 180, 978-987, 2021
452021
NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: A comparison of different solution strategies
S Lang, T Reggelin, J Schmidt, M Müller, A Nahhas
Expert Systems with Applications 172, 114666, 2021
352021
Comparative analysis of machine learning models for anomaly detection in manufacturing
A Kharitonov, A Nahhas, M Pohl, K Turowski
Procedia Computer Science 200, 1288-1297, 2022
282022
Exploring the specificities and challenges of testing big data systems
D Staegemann, M Volk, A Nahhas, M Abdallah, K Turowski
2019 15th International Conference on Signal-Image Technology & Internet …, 2019
252019
Simulation-based optimization for solving a hybrid flow shop scheduling problem
P Aurich, A Nahhas, T Reggelin, J Tolujew
2016 Winter Simulation Conference (WSC), 2809-2819, 2016
252016
Toward a lifecycle for data science: a literature review of data science process models
C Haertel, M Pohl, A Nahhas, D Staegemann, K Turowski
192022
Toward adaptive manufacturing: Scheduling problems in the context of industry 4.0
A Nahhas, S Lang, S Bosse, K Turowski
2018 Sixth international conference on enterprise systems (ES), 108-115, 2018
192018
Evolving neural networks to solve a two-stage hybrid flow shop scheduling problem with family setup times
S Lang, T Reggelin, F Behrendt, A Nahhas
162020
On the Integration of Google Cloud and SAP HANA for Adaptive Supply Chain in Retailing
A Nahhas, C Haertel, C Daase, M Volk, A Ramesohl, H Steigerwald, ...
Procedia Computer Science 217, 1857-1866, 2023
132023
Following the digital thread–a cloud-based observation
C Daase, C Haertel, A Nahhas, M Volk, H Steigerwald, A Ramesohl, ...
Procedia Computer Science 217, 1867-1876, 2023
122023
Challenges in Data Acquisition and Management in Big Data Environments.
D Staegemann, M Volk, A Saxena, M Pohl, A Nahhas, R Häusler, ...
IoTBDS, 193-204, 2021
112021
Deep reinforcement learning techniques for solving hybrid flow shop scheduling problems: Proximal policy optimization (PPO) and asynchronous advantage actor-critic (A3C)
A Nahhas, A Kharitonov, K Turowski
102022
An adaptive scheduling framework for solving multi-objective hybrid flow shop scheduling problems
A Nahhas, M Krist, K Turowski
102021
Heuristic and metaheuristic simulation-based optimization for solving a hybrid flow shop scheduling problem
A Nahhas, P Aurich, T Reggelin, J Tolujew
102016
Towards a Decision Support System for Big Data Projects.
M Volk, D Staegemann, S Bosse, A Nahhas, K Turowski, N Gronau, ...
Wirtschaftsinformatik (Zentrale Tracks), 357-368, 2020
82020
MLOps in Data Science Projects: A Review
C Haertel, D Staegemann, C Daase, M Pohl, A Nahhas, K Turowski
2023 IEEE International Conference on Big Data (BigData), 2396-2404, 2023
72023
Hybrid approach for solving multi-objective hybrid flow shop scheduling problems with family setup times
A Nahhas, A Kharitonov, A Alwadi, K Turowski
Procedia Computer Science 200, 1685-1694, 2022
72022
Determining Potential Failures and Challenges in Data Driven Endeavors: A Real World Case Study Analysis.
D Staegemann, M Volk, T Vu, S Bosse, R Häusler, A Nahhas, M Pohl, ...
IoTBDS, 453-460, 2020
72020
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20