Ikuti
Simon Weissmann
Simon Weissmann
Email yang diverifikasi di uni-mannheim.de - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Well posedness and convergence analysis of the ensemble Kalman inversion
D Blömker, C Schillings, P Wacker, S Weissmann
Inverse Problems 35 (8), 085007, 2019
632019
Fokker--Planck particle systems for Bayesian inference: Computational approaches
S Reich, S Weissmann
SIAM/ASA Journal on Uncertainty Quantification 9 (2), 446-482, 2021
552021
On the incorporation of box-constraints for ensemble Kalman inversion
NK Chada, C Schillings, S Weissmann
Foundations of Data Science 1 (4), 433-456, 2019
322019
Adaptive Tikhonov strategies for stochastic ensemble Kalman inversion
S Weissmann, NK Chada, C Schillings, XT Tong
Inverse Problems 38 (4), 045009, 2022
192022
Continuous time limit of the stochastic ensemble Kalman inversion: strong convergence analysis
D Blömker, C Schillings, P Wacker, S Weissmann
SIAM Journal on Numerical Analysis 60 (6), 3181-3215, 2022
162022
14 Ensemble Kalman filter for neural network-based one-shot inversion
PA Guth, C Schillings, S Weissmann
Optimization and Control for Partial Differential Equations: Uncertainty …, 2022
142022
Gradient flow structure and convergence analysis of the ensemble Kalman inversion for nonlinear forward models
S Weissmann
Inverse Problems 38 (10), 105011, 2022
102022
Ensemble Kalman filter for neural network based one-shot inversion
PA Guth, C Schillings, S Weissmann
arXiv preprint arXiv:2005.02039, 2020
102020
Beyond stationarity: Convergence analysis of stochastic softmax policy gradient methods
S Klein, S Weissmann, L Döring
arXiv preprint arXiv:2310.02671, 2023
82023
Consistency analysis of bilevel data-driven learning in inverse problems
NK Chada, C Schillings, XT Tong, S Weissmann
Communications in Mathematical Sciences 20 (1), 123-164, 2022
82022
Almost sure convergence rates of stochastic gradient methods under gradient domination
S Weissmann, S Klein, W Azizian, L Döring
arXiv preprint arXiv:2405.13592, 2024
72024
Multilevel Optimization for Inverse Problems
S Weissmann, A Wilson, J Zech
Conference on Learning Theory, 2022, 5489-5524, 2022
72022
Metropolis-adjusted interacting particle sampling
B Sprungk, S Weissmann, J Zech
arXiv preprint arXiv:2312.13889, 2023
52023
Particle based sampling and optimization methods for inverse problems
SL Weissmann
PQDT-Global, 2020
32020
Structure Matters: Dynamic Policy Gradient
S Klein, X Zhang, T Başar, S Weissmann, L Döring
arXiv preprint arXiv:2411.04913, 2024
22024
Adaptive multilevel subset simulation with selective refinement
D Elfverson, R Scheichl, S Weissmann, FA Diaz De La O
SIAM/ASA Journal on Uncertainty Quantification 12 (3), 932-963, 2024
22024
On the ensemble Kalman inversion under inequality constraints
M Hanu, S Weissmann
Inverse Problems 40 (9), 095009, 2024
22024
One-shot learning of surrogates in PDE-constrained optimization under uncertainty
PA Guth, C Schillings, S Weissmann
SIAM/ASA Journal on Uncertainty Quantification 12 (2), 614-645, 2024
22024
Polyak's Heavy Ball Method Achieves Accelerated Local Rate of Convergence under Polyak-Lojasiewicz Inequality
S Kassing, S Weissmann
arXiv preprint arXiv:2410.16849, 2024
12024
The ensemble kalman filter for dynamic inverse problems
S Weissmann, NK Chada, XT Tong
Information and Inference: A Journal of the IMA 13 (4), iaae030, 2024
2024
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20