An Iron Electrocatalyst for Selective Reduction of CO2 to Formate in Water: Including Thermochemical Insights A Taheri, EJ Thompson, JC Fettinger, LA Berben ACS Catalysis 5 (12), 7140-7151, 2015 | 211 | 2015 |
Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2 TW Myers, LA Berben Chemical Science 5 (7), 2771-2777, 2014 | 181 | 2014 |
Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces LA Berben, JC Peters Chemical communications 46 (3), 398-400, 2010 | 172 | 2010 |
Electrocatalytic Hydrogen Production by an Aluminum (III) Complex: Ligand‐Based Proton and Electron Transfer EJ Thompson, LA Berben Angewandte Chemie International Edition 54 (40), 11642-11646, 2015 | 149 | 2015 |
Aluminum–ligand cooperative N–H bond activation and an example of dehydrogenative coupling TW Myers, LA Berben Journal of the American Chemical Society 135 (27), 9988-9990, 2013 | 139 | 2013 |
Directing the Reactivity of [HFe4N(CO)12]− toward H+ or CO2 Reduction by Understanding the Electrocatalytic Mechanism MD Rail, LA Berben Journal of the American Chemical Society 133 (46), 18577-18579, 2011 | 139 | 2011 |
Non-innocent ligands LA Berben, B de Bruin, AF Heyduk Chemical Communications 51 (9), 1553-1554, 2015 | 123 | 2015 |
Catalysis by Aluminum (III) Complexes of Non‐Innocent Ligands LA Berben Chemistry–A European Journal 21 (7), 2734-2742, 2015 | 116 | 2015 |
Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin L Xia, AG Cregan, LA Berben, NE Brasch Inorganic Chemistry 43 (21), 6848-6857, 2004 | 114 | 2004 |
Making C–H bonds with CO 2: production of formate by molecular electrocatalysts A Taheri, LA Berben Chemical Communications 52 (9), 1768-1777, 2016 | 112 | 2016 |
A redox series of aluminum complexes: characterization of four oxidation states including a ligand biradical state stabilized via exchange coupling TW Myers, N Kazem, S Stoll, RD Britt, M Shanmugam, LA Berben Journal of the American Chemical Society 133 (22), 8662-8672, 2011 | 111 | 2011 |
[(Cyclen)4Ru4(pz)4]9+: A Creutz−Taube Square VC Lau, LA Berben, JR Long Journal of the American Chemical Society 124 (31), 9042-9043, 2002 | 107 | 2002 |
Renewable Formate from C–H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts ND Loewen, TV Neelakantan, LA Berben Accounts of Chemical Research 50 (9), 2362-2370, 2017 | 104 | 2017 |
Tailoring Electrocatalysts for Selective CO2 or H+ Reduction: Iron Carbonyl Clusters as a Case Study A Taheri, LA Berben Inorganic chemistry 55 (2), 378-385, 2016 | 104 | 2016 |
Electrocatalytic hydrogen evolution from water by a series of iron carbonyl clusters AD Nguyen, MD Rail, M Shanmugam, JC Fettinger, LA Berben Inorganic Chemistry 52 (21), 12847-12854, 2013 | 103 | 2013 |
Synthesis of Square‐Planar Aluminum (III) Complexes EJ Thompson, TW Myers, LA Berben Angewandte Chemie International Edition 53 (51), 14132-14134, 2014 | 83 | 2014 |
Reactive Capture of CO2: Opportunities and Challenges RE Siegel, S Pattanayak, LA Berben ACS Catalysis 13 (1), 766-784, 2022 | 77 | 2022 |
Control of Ligand pKa Values Tunes the Electrocatalytic Dihydrogen Evolution Mechanism in a Redox-Active Aluminum(III) Complex TJ Sherbow, JC Fettinger, LA Berben Inorganic Chemistry 56 (15), 8651-8660, 2017 | 73 | 2017 |
A pendant proton shuttle on [Fe 4 N (CO) 12]− alters product selectivity in formate vs. H 2 production via the hydride [H–Fe 4 N (CO) 12]− ND Loewen, EJ Thompson, M Kagan, CL Banales, TW Myers, ... Chemical science 7 (4), 2728-2735, 2016 | 73 | 2016 |
Metal–Metal Interactions in C3-Symmetric Diiron Imido Complexes Linked by Phosphinoamide Ligands S Kuppuswamy, TM Powers, BM Johnson, MW Bezpalko, CK Brozek, ... Inorganic chemistry 52 (9), 4802-4811, 2013 | 73 | 2013 |