Ikuti
Weinan E
Weinan E
Professor of Mathematics, Princeton University
Email yang diverifikasi di math.princeton.edu
Judul
Dikutip oleh
Dikutip oleh
Tahun
Solving high-dimensional partial differential equations using deep learning
J Han, A Jentzen, W E
Proceedings of the National Academy of Sciences 115 (34), 8505-8510, 2018
20942018
Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics
L Zhang, J Han, H Wang, R Car, W E
Physical review letters 120 (14), 143001, 2018
20182018
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
H Wang, L Zhang, J Han, E Weinan
Computer Physics Communications 228, 178-184, 2018
14152018
String method for the study of rare events
E Weinan, W Ren, E Vanden-Eijnden
Physical Review B 66 (5), 052301, 2002
1389*2002
A proposal on machine learning via dynamical systems
E Weinan
Communications in Mathematics and Statistics 5 (1), 1-11, 2017
6992017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
J Han, A Jentzen
Communications in mathematics and statistics 5 (4), 349-380, 2017
6942017
Onsager's conjecture on the energy conservation for solutions of Euler's equation
P Constantin, W E, ES Titi
6601994
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
Y Zhang, H Wang, W Chen, J Zeng, L Zhang, H Wang, E Weinan
Computer Physics Communications 253, 107206, 2020
5962020
Active learning of uniformly accurate interatomic potentials for materials simulation
L Zhang, DY Lin, H Wang, R Car, W E
Physical Review Materials 3 (2), 023804, 2019
5552019
The heterognous multiscale methods
E Weinan, B Engquist
Communications in Mathematical Sciences 1 (1), 87-132, 2003
5452003
Principles of multiscale modeling
E Weinan
Cambridge University Press, 2011
5352011
Heterogeneous multiscale methods: a review
E Weinan, B Engquist, X Li, W Ren, E Vanden-Eijnden
Communications in computational physics 2 (3), 367-450, 2007
5102007
Transition-path theory and path-finding algorithms for the study of rare events.
E Vanden-Eijnden
Annual review of physical chemistry 61, 391-420, 2010
5012010
The heterogeneous multiscale method
A Abdulle, E Weinan, B Engquist, E Vanden-Eijnden
Acta Numerica 21, 1-87, 2012
4952012
Finite temperature string method for the study of rare events
E Weinan, W Ren, E Vanden-Eijnden
j. Phys. Chem. B 109 (14), 6688-6693, 2005
4332005
Towards a theory of transition paths
E Vanden-Eijnden
Journal of statistical physics 123 (3), 503-523, 2006
3782006
Phase diagram of a deep potential water model
L Zhang, H Wang, R Car, W E
Physical review letters 126 (23), 236001, 2021
3522021
Stochastic modified equations and adaptive stochastic gradient algorithms
Q Li, C Tai, E Weinan
International Conference on Machine Learning, 2101-2110, 2017
3382017
Heterogeneous multiscale method: a general methodology for multiscale modeling
E Weinan, B Engquist, Z Huang
Physical Review B 67 (9), 092101, 2003
3172003
Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning
W Jia, H Wang, M Chen, D Lu, L Lin, R Car, E Weinan, L Zhang
SC20: International conference for high performance computing, networking …, 2020
3122020
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20