Ikuti
Chiem van Straaten
Chiem van Straaten
Email yang diverifikasi di vu.nl - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Exploring deep learning capabilities for surge predictions in coastal areas
T Tiggeloven, A Couasnon, C van Straaten, S Muis, PJ Ward
Scientific reports 11 (1), 17224, 2021
592021
Using explainable machine learning forecasts to discover subseasonal drivers of high summer temperatures in western and central Europe
C Van Straaten, K Whan, D Coumou, B Van den Hurk, M Schmeits
Monthly Weather Review 150 (5), 1115-1134, 2022
422022
The influence of aggregation and statistical post‐processing on the subseasonal predictability of European temperatures
C van Straaten, K Whan, D Coumou, B van den Hurk, M Schmeits
Quarterly Journal of the Royal Meteorological Society 146 (731), 2654-2670, 2020
252020
Statistical postprocessing and multivariate structuring of high-resolution ensemble precipitation forecasts
C van Straaten, K Whan, M Schmeits
Journal of Hydrometeorology 19 (11), 1815-1833, 2018
252018
Artificial intelligence for climate prediction of extremes: State of the art, challenges, and future perspectives
S Materia, LP García, C van Straaten, S O, A Mamalakis, L Cavicchia, ...
Wiley Interdisciplinary Reviews: Climate Change 15 (6), e914, 2024
122024
Correcting Subseasonal Forecast Errors with an Explainable ANN to Understand Misrepresented Sources of Predictability of European Summer Temperatures
C van Straaten, K Whan, D Coumou, B van den Hurk, M Schmeits
Artificial Intelligence for the Earth Systems 2 (3), e220047, 2023
112023
Artificial Intelligence for Prediction of Climate Extremes: State of the art, challenges and future perspectives
S Materia, LP García, C van Straaten, A Mamalakis, L Cavicchia, ...
arXiv preprint arXiv:2310.01944, 2023
72023
Exploring deep learning capabilities for surge predictions in coastal areas, Sci. Rep., 11, 17224
T Tiggeloven, A Couasnon, C van Straaten, S Muis, PJ Ward
72021
Regional Modelling of Water Stress; Irrigation water requirement meets water availability in the Oum Er Rbia basin
JW van Straaten
42017
Predicting food‐security crises in the Horn of Africa using machine learning
T Busker, B van den Hurk, H de Moel, M van den Homberg, ...
Earth's Future 12 (8), e2023EF004211, 2024
32024
Improving sub-seasonal forecasts by correcting missing teleconnections using ANN-based post-processing
C van Straaten, K Whan, D Coumou, B van den Hurk, M Schmeits
EGU General Assembly Conference Abstracts, EGU22-1686, 2022
12022
Disentangling wave-like atmospheric trends in the northern hemisphere midlatitudes
C van Straaten, T Happé, F D'Andrea, D Coumou
EGU24, 2024
2024
Machine Learning to improve and understand sub-seasonal forecasts of European temperature
JW van Straaten
2023
Strengthening gradients in the tropical west Pacific connect to European summer temperatures on sub-seasonal timescales
C van Straaten, D Coumou, K Whan, B van den Hurk, M Schmeits
Weather and Climate Dynamics Discussions 2023, 1-20, 2023
2023
Using explainable machine learning forecasts to discover sub-seasonal
C van Straaten, K Whan, D Coumou, B van den Hurk, M Schmeits
2022
Towards rapid surge predictions: Exploring deep learning approaches to predict temporal evolution of surge levels in coastal areas
T Tiggeloven, A Couasnon, C van Straaten, S Muis, P Ward
AGU Fall Meeting Abstracts 2021, A45J-1988, 2021
2021
Exploring deep learning approaches to predict hourly evolution of surge levels
T Tiggeloven, A Couasnon, C van Straaten, S Muis, P Ward
EGU General Assembly Conference Abstracts, EGU21-8638, 2021
2021
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–17