Multiscale dynamic graph convolutional network for hyperspectral image classification S Wan, C Gong, P Zhong, B Du, L Zhang, J Yang IEEE Transactions on Geoscience and Remote Sensing 58 (5), 3162-3177, 2019 | 433 | 2019 |
Learning to diversify deep belief networks for hyperspectral image classification P Zhong, Z Gong, S Li, CB Schönlieb IEEE Transactions on Geoscience and Remote Sensing 55 (6), 3516-3530, 2017 | 364 | 2017 |
Diversity in machine learning Z Gong, P Zhong, W Hu Ieee Access 7, 64323-64350, 2019 | 288 | 2019 |
A CNN with multiscale convolution and diversified metric for hyperspectral image classification Z Gong, P Zhong, Y Yu, W Hu, S Li IEEE Transactions on Geoscience and Remote Sensing 57 (6), 3599-3618, 2019 | 234 | 2019 |
A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images P Zhong, R Wang IEEE Transactions on Geoscience and Remote Sensing 45 (12), 3978-3988, 2007 | 233 | 2007 |
Hyperspectral image classification with context-aware dynamic graph convolutional network S Wan, C Gong, P Zhong, S Pan, G Li, J Yang IEEE Transactions on Geoscience and Remote Sensing 59 (1), 597-612, 2020 | 197 | 2020 |
Unsupervised representation learning with deep convolutional neural network for remote sensing images Y Yu, Z Gong, P Zhong, J Shan Image and Graphics: 9th International Conference, ICIG 2017, Shanghai, China …, 2017 | 173 | 2017 |
Learning conditional random fields for classification of hyperspectral images P Zhong, R Wang IEEE transactions on image processing 19 (7), 1890-1907, 2010 | 159 | 2010 |
Multiple-spectral-band CRFs for denoising junk bands of hyperspectral imagery P Zhong, R Wang IEEE Transactions on Geoscience and Remote Sensing 51 (4), 2260-2275, 2012 | 128 | 2012 |
Active learning with Gaussian process classifier for hyperspectral image classification S Sun, P Zhong, H Xiao, R Wang IEEE Transactions on Geoscience and Remote Sensing 53 (4), 1746-1760, 2014 | 101 | 2014 |
Diversity-promoting deep structural metric learning for remote sensing scene classification Z Gong, P Zhong, Y Yu, W Hu IEEE Transactions on Geoscience and Remote Sensing 56 (1), 371-390, 2017 | 93 | 2017 |
Automatic graph learning convolutional networks for hyperspectral image classification J Chen, L Jiao, X Liu, L Li, F Liu, S Yang IEEE Transactions on Geoscience and Remote Sensing 60, 1-16, 2021 | 84 | 2021 |
Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials P Zhong, R Wang IEEE Transactions on Geoscience and Remote Sensing 49 (2), 688-705, 2010 | 79 | 2010 |
Dynamic learning of SMLR for feature selection and classification of hyperspectral data P Zhong, P Zhang, R Wang IEEE Geoscience and Remote Sensing Letters 5 (2), 280-284, 2008 | 78 | 2008 |
Jointly learning the hybrid CRF and MLR model for simultaneous denoising and classification of hyperspectral imagery P Zhong, R Wang IEEE Transactions on Neural Networks and Learning Systems 25 (7), 1319-1334, 2014 | 75 | 2014 |
An unsupervised convolutional feature fusion network for deep representation of remote sensing images Y Yu, Z Gong, C Wang, P Zhong IEEE Geoscience and Remote Sensing Letters 15 (1), 23-27, 2017 | 69 | 2017 |
Statistical loss and analysis for deep learning in hyperspectral image classification Z Gong, P Zhong, W Hu IEEE transactions on neural networks and learning systems 32 (1), 322-333, 2020 | 60 | 2020 |
A MRF Model-Based Active Learning Framework for the Spectral-Spatial Classification of Hyperspectral Imagery S Sun, Z Ping, H Xiao, R Wang IEEE Journal of Selected Topics in Signal Processing 9 (6), 1074 - 1088, 2015 | 51 | 2015 |
Adversarial patch attack on multi-scale object detection for UAV remote sensing images Y Zhang, Y Zhang, J Qi, K Bin, H Wen, X Tong, P Zhong Remote Sensing 14 (21), 5298, 2022 | 48 | 2022 |
Learning sparse CRFs for feature selection and classification of hyperspectral imagery P Zhong, R Wang IEEE Transactions on Geoscience and Remote Sensing 46 (12), 4186-4197, 2008 | 46 | 2008 |