Ikuti
Murat A. Erdogdu
Murat A. Erdogdu
University of Toronto
Email yang diverifikasi di stanford.edu - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Seismic: A self-exciting point process model
Q Zhao, MA Erdogdu, HY He, A Rajaraman, J Leskovec
Proceedings of the 21th ACM SIGKDD international conference on knowledge …, 2015
7952015
Convergence rates of sub-sampled Newton methods
MA Erdogdu, A Montanari
Advances in Neural Information Processing Systems, 1090-1098, 2015
1862015
High-dimensional asymptotics of feature learning: How one gradient step improves the representation
J Ba, MA Erdogdu, T Suzuki, Z Wang, D Wu, G Yang
Advances in Neural Information Processing Systems 35, 37932-37946, 2022
1532022
Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev
S Chewi, MA Erdogdu, MB Li, R Shen, M Zhang
Foundations of Computational Mathematics, 2024
1292024
Global non-convex optimization with discretized diffusions
MA Erdogdu, L Mackey, O Shamir
Advances in Neural Information Processing Systems 31, 2018
1242018
Manipulating sgd with data ordering attacks
I Shumailov, Z Shumaylov, D Kazhdan, Y Zhao, N Papernot, MA Erdogdu, ...
Advances in Neural Information Processing Systems 34, 18021-18032, 2021
942021
Generalization of two-layer neural networks: An asymptotic viewpoint
J Ba, M Erdogdu, T Suzuki, D Wu, T Zhang
International conference on learning representations, 2020
922020
Convergence rates of active learning for maximum likelihood estimation
K Chaudhuri, SM Kakade, P Netrapalli, S Sanghavi
Advances in Neural Information Processing Systems 28, 2015
862015
Stochastic runge-kutta accelerates langevin monte carlo and beyond
X Li, Y Wu, L Mackey, MA Erdogdu
Advances in neural information processing systems 32, 2019
822019
Towards a theory of non-log-concave sampling: first-order stationarity guarantees for langevin monte carlo
K Balasubramanian, S Chewi, MA Erdogdu, A Salim, S Zhang
Conference on Learning Theory, 2896-2923, 2022
782022
On the convergence of langevin monte carlo: The interplay between tail growth and smoothness
MA Erdogdu, R Hosseinzadeh
Conference on Learning Theory, 1776-1822, 2021
782021
Estimating lasso risk and noise level
M Bayati, MA Erdogdu, A Montanari
Advances in Neural Information Processing Systems 26, 2013
732013
Hausdorff dimension, heavy tails, and generalization in neural networks
U Simsekli, O Sener, G Deligiannidis, MA Erdogdu
Advances in Neural Information Processing Systems, 2020
69*2020
Neural networks efficiently learn low-dimensional representations with sgd
A Mousavi-Hosseini, S Park, M Girotti, I Mitliagkas, MA Erdogdu
International Conference on Learning Representations, 2022
612022
An analysis of constant step size sgd in the non-convex regime: Asymptotic normality and bias
L Yu, K Balasubramanian, S Volgushev, MA Erdogdu
Advances in Neural Information Processing Systems, 2021
512021
Convergence rates of stochastic gradient descent under infinite noise variance
H Wang, M Gurbuzbalaban, L Zhu, U Simsekli, MA Erdogdu
Advances in Neural Information Processing Systems 34, 18866-18877, 2021
482021
Normal approximation for stochastic gradient descent via non-asymptotic rates of martingale CLT
A Anastasiou, K Balasubramanian, MA Erdogdu
Conference on Learning Theory, 115-137, 2019
472019
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
MA Erdogdu, R Hosseinzadeh, MS Zhang
International Conference on Artificial Intelligence and Statistics, 2021
462021
Robust estimation of neural signals in calcium imaging
H Inan, MA Erdogdu, M Schnitzer
Advances in neural information processing systems 30, 2017
422017
On the ergodicity, bias and asymptotic normality of randomized midpoint sampling method
Y He, K Balasubramanian, MA Erdogdu
Advances in Neural Information Processing Systems 33, 7366-7376, 2020
412020
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20