Ikuti
Sana Tonekaboni
Sana Tonekaboni
Broad Institute of MIT and Harvard
Email yang diverifikasi di broadinstitute.org - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
What clinicians want: contextualizing explainable machine learning for clinical end use
S Tonekaboni, S Joshi, MD McCradden, A Goldenberg
Machine Learning for Healthcare Conference (MLHC), 359-380, 2019
5612019
Unsupervised representation learning for time series with temporal neighborhood coding
S Tonekaboni, D Eytan, A Goldenberg
International Conference on Learning Representations (ICLR), 2021
3632021
Closed-loop neurostimulators: A survey and a seizure-predicting design example for intractable epilepsy treatment
H Kassiri, S Tonekaboni, MT Salam, N Soltani, K Abdelhalim, ...
IEEE transactions on biomedical circuits and systems 11 (5), 1026-1040, 2017
1362017
What went wrong and when? Instance-wise feature importance for time-series black-box models
S Tonekaboni, S Joshi, K Campbell, DK Duvenaud, A Goldenberg
Advances in Neural Information Processing Systems (NeurIPS), 2020
912020
Prediction of cardiac arrest from physiological signals in the pediatric ICU
S Tonekaboni, M Mazwi, P Laussen, D Eytan, R Greer, SD Goodfellow, ...
Machine Learning for Healthcare Conference, 534-550, 2018
372018
Decoupling local and global representations of time series
S Tonekaboni, CL Li, SO Arik, A Goldenberg, T Pfister
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2022
262022
Machine learning for healthcare conference
S Tonekaboni, S Joshi, MD McCradden, A Goldenberg
PMLR, 2019
152019
Learning unsupervised representations for ICU timeseries
A Weatherhead, R Greer, MA Moga, M Mazwi, D Eytan, A Goldenberg, ...
Conference on Health, Inference, and Learning, 152-168, 2022
112022
How to validate machine learning models prior to deployment: silent trial protocol for evaluation of real-time models at ICU
S Tonekaboni, G Morgenshtern, A Assadi, A Pokhrel, X Huang, ...
Conference on Health, Inference, and Learning, 169-182, 2022
112022
Modeling personalized heart rate response to exercise and environmental factors with wearables data
A Nazaret, S Tonekaboni, G Darnell, SY Ren, G Sapiro, AC Miller
NPJ Digital Medicine 6 (1), 207, 2023
102023
Explaining time series by counterfactuals
S Tonekaboni, S Joshi, D Duvenaud, A Goldenberg
92020
Dynamic interpretable change point detection for physiological data analysis
J Yu, T Behrouzi, K Garg, A Goldenberg, S Tonekaboni
Machine Learning for Health (ML4H), 636-649, 2023
42023
Modeling Heart Rate Response to Exercise with Wearables Data
A Nazaret, S Tonekaboni, G Darnell, S Ren, G Sapiro, A Miller
NeurIPS 2022 Workshop on Learning from Time Series for Health, 2022
32022
An Information Criterion for Controlled Disentanglement of Multimodal Data
C Wang, S Gupta, X Zhang, S Tonekaboni, S Jegelka, T Jaakkola, ...
arXiv preprint arXiv:2410.23996, 2024
12024
RiskFix: Supporting Expert Validation of Predictive Timeseries Models in High-Intensity Settings
G Morgenshtern, A Verma, S Tonekaboni, R Greer, J Bernard, M Mazwi, ...
EuroVis 2023-Short Papers, 13-17, 2023
12023
Dynamic Interpretable Change Point Detection
K Garg, J Yu, T Behrouzi, S Tonekaboni, A Goldenberg
arXiv preprint arXiv:2211.03991, 2022
12022
What makes a ‘good’decision with artificial intelligence? A grounded theory study in paediatric care
MD McCradden, K Thai, A Assadi, S Tonekaboni, I Stedman, S Joshi, ...
BMJ Evidence-Based Medicine, 2025
2025
A collection of the accepted papers for the Human-Centric Representation Learning workshop at AAAI 2024
D Spathis, A Saeed, A Etemad, S Tonekaboni, S Laskaridis, S Deldari, ...
arXiv preprint arXiv:2403.10561, 2024
2024
Learning from Time Series under Temporal Label Noise
S Nagaraj, W Gerych, S Tonekaboni, A Goldenberg, B Ustun, ...
arXiv preprint arXiv:2402.04398, 2024
2024
Machine Learning for Health (ML4H) 2024
H Zhou, S Hegselmann, E Healey, T Chang, C Ellington, M Leone, ...
2024
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20