Ikuti
Thomas Küstner
Thomas Küstner
University Hospital of Tübingen
Email yang diverifikasi di uni-tuebingen.de - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
MedGAN: Medical image translation using GANs
K Armanious, C Jiang, M Fischer, T Küstner, T Hepp, K Nikolaou, ...
Computerized medical imaging and graphics 79, 101684, 2020
7242020
CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions
T Küstner, N Fuin, K Hammernik, A Bustin, H Qi, R Hajhosseiny, PG Masci, ...
Scientific Reports 10, 13710, 2020
2242020
A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions
S Gatidis, T Hepp, M Früh, C La Fougère, K Nikolaou, C Pfannenberg, ...
Scientific Data 9 (1), 1-7, 2022
2202022
Retrospective correction of motion‐affected MR images using deep learning frameworks
T Küstner, K Armanious, J Yang, B Yang, F Schick, S Gatidis
Magnetic resonance in medicine 82 (4), 1527-1540, 2019
1572019
Unsupervised Medical Image Translation Using Cycle-MedGAN
K Armanious, C Jiang, S Abdulatif, T Küstner, S Gatidis, B Yang
European Association for Signal Processing (EUSIPCO), 2019
1442019
Automated reference-free detection of motion artifacts in magnetic resonance images
T Küstner, A Liebgott, L Mauch, P Martirosian, F Bamberg, K Nikolaou, ...
Magnetic Resonance Materials in Physics, Biology and Medicine 31, 243-256, 2018
1172018
MR-based respiratory and cardiac motion correction for PET imaging
T Küstner, M Schwartz, P Martirosian, S Gatidis, F Seith, C Gilliam, T Blu, ...
Medical Image Analysis, 2017
862017
Deep learning applications in magnetic resonance imaging: has the future become present?
S Gassenmaier, T Küstner, D Nickel, J Herrmann, R Hoffmann, ...
Diagnostics 11 (12), 2181, 2021
842021
Physics-driven deep learning for computational magnetic resonance imaging: Combining physics and machine learning for improved medical imaging
K Hammernik, T Küstner, B Yaman, Z Huang, D Rueckert, F Knoll, ...
IEEE signal processing magazine 40 (1), 98-114, 2023
792023
Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks
K Armanious, T Hepp, T Küstner, H Dittmann, K Nikolaou, C La Fougère, ...
EJNMMI research 10, 1-9, 2020
732020
A machine-learning framework for automatic reference-free quality assessment in MRI
T Küstner, S Gatidis, A Liebgott, M Schwartz, L Mauch, P Martirosian, ...
Magnetic resonance imaging 53, 134-147, 2018
722018
Feasibility and implementation of a deep learning MR reconstruction for TSE sequences in musculoskeletal imaging
J Herrmann, G Koerzdoerfer, D Nickel, M Mostapha, M Nadar, ...
Diagnostics 11 (8), 1484, 2021
672021
Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute
T Küstner, CM Escobar, A Psenicny, A Bustin, N Fuin, H Qi, R Neji, ...
Magnetic Resonance in Medicine, 2021
672021
Simultaneous multislice diffusion‐weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences
J Taron, P Martirosian, M Erb, T Kuestner, NF Schwenzer, H Schmidt, ...
Journal of Magnetic Resonance Imaging 44 (4), 865-879, 2016
672016
MR image reconstruction using a combination of compressed sensing and partial Fourier acquisition: ESPReSSo
T Küstner, C Würslin, S Gatidis, P Martirosian, K Nikolaou, NF Schwenzer, ...
IEEE transactions on medical imaging 35 (11), 2447-2458, 2016
612016
Deep learning‐based automated abdominal organ segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies
T Kart, M Fischer, T Küstner, T Hepp, F Bamberg, S Winzeck, B Glocker, ...
Investigative Radiology 56 (6), 401-408, 2021
582021
The autopet challenge: Towards fully automated lesion segmentation in oncologic pet/ct imaging. preprint at Research Square (Nature Portfolio)(2023)
S Gatidis, M Früh, M Fabritius, S Gu, K Nikolaou, C La Fougère, J Ye, J He, ...
57*2023
Cardiac MR: from theory to practice
TF Ismail, W Strugnell, C Coletti, M Božić-Iven, S Weingaertner, ...
Frontiers in cardiovascular medicine 9, 826283, 2022
552022
A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography
N Fuin, A Bustin, T Küstner, I Oksuz, J Clough, AP King, JA Schnabel, ...
Magnetic resonance imaging 70, 155-167, 2020
552020
Retrospective correction of Rigid and Non-Rigid MR motion artifacts using GANs
K Armanious, K Nikolaou, S Gatidis, B Yang, T Küstner
arXiv preprint arXiv:1809.06276, 2018
512018
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20