Ikuti
Oishi Deb
Oishi Deb
VGG, University of Oxford (Ex Rolls-Royce)
Email yang diverifikasi di robots.ox.ac.uk - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Synthetic Data for Machine Learning - Book
O Deb - Reviewer, LS Marcolino - Reviewer, A Kerim - Author
Packt Publisher - https://bit.ly/49ltkYU, 2023
3*2023
Responsible AI governance: a response to UN interim report on governing AI for humanity
S Kiden*, B Stahl*, B Townsend*, C Maple*, C Vincent*, F Sampson*, ...
arXiv preprint arXiv:2412.12108 (All Authors Contributed Equally), 2024
12024
New keypoint-based approach for recognising British Sign Language (BSL) from sequences
O Deb, KR Prajwal, A Zisserman
arXiv preprint arXiv:2412.09475, 2024
2024
Towards Multi-Modal Animal Pose Estimation: An In-Depth Analysis
Q Deng*, O Deb*, A Patel, C Rupprecht, P Torr, N Trigoni, A Markham
arXiv preprint arXiv:2410.09312, 2024
2024
Diffusion Models for 3D Reconstruction and Articulation of Deformable Objects
O Deb
Oxford Computer Science Conference 2024, 2024
2024
Remaining-Useful-Life Prediction and Uncertainty Quantification using LSTM Ensembles for Aircraft Engines
O Deb, E Benetos, P Torr
Neural Information Processing Systems (NeurIPS), Advancing Neural Network …, 2023
2023
Uncertainty Quantification using Deep Ensembles for Safety-Critical Predictive Models
O Deb, E Benetos, P Torr
Neural Information Processing Systems (NeurIPS), Advancing Neural Network …, 2023
2023
Recognising Signs in Continuous Signing Sequences
O Deb, A Zisserman
Oxford Computer Science Conference 2023, 2023
2023
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–8