Ikuti
Shaoxing Mo
Shaoxing Mo
Assistant Professor, Nanjing University
Email yang diverifikasi di nju.edu.cn
Judul
Dikutip oleh
Dikutip oleh
Tahun
Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
S Mo, Y Zhu, N Zabaras, X Shi, J Wu
Water Resources Research 55 (1), 703-728, 2019
3412019
Deep autoregressive neural networks for high‐dimensional inverse problems in groundwater contaminant source identification
S Mo, N Zabaras, X Shi, J Wu
Water Resources Research 55 (5), 3856-3881, 2019
2512019
Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non‐Gaussian hydraulic conductivities
S Mo, N Zabaras, X Shi, J Wu
Water Resources Research 56 (2), e2019WR026082, 2020
1152020
Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap
S Mo, Y Zhong, E Forootan, N Mehrnegar, X Yin, J Wu, W Feng, X Shi
Journal of Hydrology 604, 127244, 2022
84*2022
A Taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling
S Mo, D Lu, X Shi, G Zhang, M Ye, J Wu, J Wu
Water Resources Research 53 (12), 10802-10823, 2017
682017
Hydrogeophysical Characterization of Nonstationary DNAPL Source Zones by Integrating a Convolutional Variational Autoencoder and Ensemble Smoother
X Kang, A Kokkinaki, PK Kitanidis, X Shi, J Lee, S Mo, J Wu
Water Resources Research 57 (2), e2020WR028538, 2021
412021
An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling
S Mo, X Shi, D Lu, M Ye, J Wu
Computers & Geosciences 125, 69-77, 2019
362019
Hydrological Droughts of 2017–2018 Explained by the Bayesian Reconstruction of GRACE (‐FO) Fields
S Mo, Y Zhong, E Forootan, X Shi, W Feng, X Yin, J Wu
Water Resources Research 58 (9), e2022WR031997, 2022
212022
Deep learning based optimization under uncertainty for surfactant-enhanced DNAPL remediation in highly heterogeneous aquifers
J Du, X Shi, S Mo, X Kang, J Wu
Journal of Hydrology 608, 127639, 2022
142022
Water storage changes (2003–2020) in the Ordos Basin, China, explained by GRACE data and interpretable deep learning
Z Hu, S Tang, S Mo, X Shi, X Yin, Y Sun, X Liu, L Duan, P Miao, T Liu, ...
Hydrogeology Journal 32 (1), 307-320, 2024
42024
Uncertainty quantification of CO2 plume migration in highly channelized aquifers using probabilistic convolutional neural networks
L Feng, S Mo, AY Sun, J Wu, X Shi
Advances in Water Resources 183, 104607, 2024
32024
Deep learning-based geological parameterization for history matching CO2 plume migration in complex aquifers
L Feng, S Mo, AY Sun, D Wang, Z Yang, Y Chen, H Wang, J Wu, X Shi
Advances in Water Resources 193, 104833, 2024
12024
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–12