Ikuti
Lin Guan
Lin Guan
Meta GenAI
Email yang diverifikasi di meta.com - Beranda
Judul
Dikutip oleh
Dikutip oleh
Tahun
Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning
L Guan*, K Valmeekam*, S Sreedharan, S Kambhampati
NeurIPS 2023, 2023
1642023
LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks
S Kambhampati, K Valmeekam, L Guan, K Stechly, M Verma, S Bhambri, ...
ICML 2024 (Position Paper), 2024
136*2024
Leveraging human guidance for deep reinforcement learning tasks
R Zhang, F Torabi, L Guan, DH Ballard, P Stone
IJCAI 2019, 2019
1162019
Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset
R Zhang, C Walshe, Z Liu, L Guan, KS Muller, JA Whritner, L Zhang, ...
AAAI 2020, 2019
852019
Widening the pipeline in human-guided reinforcement learning with explanation and context-aware data augmentation
L Guan, M Verma, SS Guo, R Zhang, S Kambhampati
NeurIPS 2021 (Spotlight), 2021
63*2021
Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable and Advisable AI Systems
S Kambhampati, S Sreedharan, M Verma, Y Zha, L Guan
AAAI 2022 (Blue Sky Track), 2021
552021
Leveraging Approximate Symbolic Models for Reinforcement Learning via Skill Diversity
L Guan*, S Sreedharan*, S Kambhampati
ICML 2022, 2022
292022
Robust Planning with LLM-Modulo Framework: Case Study in Travel Planning
A Gundawar, M Verma, L Guan, K Valmeekam, S Bhambri, ...
arXiv preprint arXiv:2405.20625, 2024
202024
Relative Behavioral Attributes: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences
L Guan, K Valmeekam, S Kambhampati
ICLR 2023, 2023
132023
"Task Success" is not Enough: Investigating the Use of Video-Language Models as Behavior Critics for Catching Undesirable Agent Behaviors
L Guan, Y Zhou, D Liu, Y Zha, HB Amor, S Kambhampati
COLM 2024, 2024
122024
Contrastively Learning Visual Attention as Affordance Cues from Demonstrations for Robotic Grasping
Y Zha, S Bhambri, L Guan
IROS 2021, 2021
92021
Towards customizable reinforcement learning agents: Enabling preference specification through online vocabulary expansion
U Soni, S Sreedharan, M Verma, L Guan, M Marquez, S Kambhampati
NeurIPS 2022 Workshop on Human-in-the-Loop Learning, 2022
72022
Learning from Ambiguous Demonstrations with Self-Explanation Guided Reinforcement Learning
Y Zha, L Guan, S Kambhampati
AAAI 2024, 2021
72021
On the role of large language models in planning, July 2023. Tutorial presented at the International Conference on Automated Planning and Scheduling (ICAPS), Prague
S Kambhampati, K Valmeekam, M Marquez, L Guan
42023
Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning
S Bhambri, A Bhattacharjee, D Kalwar, L Guan, H Liu, S Kambhampati
arXiv preprint arXiv:2405.15194, 2024
12024
On the Pitfalls of Learning to Cooperate with Self Play Agents Checkpointed to Capture Humans of Diverse Skill Levels
U Biswas, L Guan, S Kambhampati
HRI 2024 LBR, 2024
2024
Taming the Sample Complexity in Agentifying AI Systems by the Exploitation of Explicit Human Knowledge
L Guan
Arizona State University, 2024
2024
Enhanced Exploration in Neural Feature Selection for Deep Click-Through Rate Prediction Models via Ensemble of Gating Layers
L Guan, X Xiao, M Chen, Y Cheng
AAAI-22 Workshop on Practical Deep Learning in the Wild, 2021
2021
LLM-Modulo Frameworks as Compound AI Architectures for Robust Planning
S Kambhampati, K Valmeekam, L Guan, M Verma, S Bhambri, K Stechly, ...
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–19