Ikuti
Sébastien Thomassey
Sébastien Thomassey
Full Professor, ENSAIT-GEMTEX
Email yang diverifikasi di ensait.fr
Judul
Dikutip oleh
Dikutip oleh
Tahun
Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management
HD Nguyen, KP Tran, S Thomassey, M Hamad
International Journal of Information Management 57, 102282, 2021
5072021
Sales forecasts in clothing industry: The key success factor of the supply chain management
S Thomassey
International Journal of Production Economics 128 (2), 470-483, 2010
3382010
A hybrid sales forecasting system based on clustering and decision trees
S Thomassey, A Fiordaliso
Decision Support Systems 42 (1), 408-421, 2006
2542006
A neural clustering and classification system for sales forecasting of new apparel items
S Thomassey, M Happiette
Applied Soft Computing 7 (4), 1177-1187, 2007
1592007
Introduction: Artificial intelligence for fashion industry in the big data era
S Thomassey, X Zeng
Artificial intelligence for fashion industry in the big data era, 1-6, 2018
972018
Sales forecasting in apparel and fashion industry: A review
S Thomassey
Intelligent fashion forecasting systems: Models and applications, 9-27, 2013
842013
A template of ease allowance for garments based on a 3D reverse methodology
S Thomassey, P Bruniaux
International Journal of Industrial Ergonomics 43 (5), 406-416, 2013
832013
A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process
Z He, KP Tran, S Thomassey, X Zeng, J Xu, C Yi
Computers in Industry 125, 103373, 2021
762021
Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning
Z He, KP Tran, S Thomassey, X Zeng, J Xu, C Yi
Journal of Manufacturing Systems 62, 939-949, 2022
752022
A global forecasting support system adapted to textile distribution
S Thomassey, M Happiette, JM Castelain
International Journal of Production Economics 96 (1), 81-95, 2005
692005
Anomaly detection using long short term memory networks and its applications in supply chain management
KP Tran, H Du Nguyen, S Thomassey
IFAC-PapersOnLine 52 (13), 2408-2412, 2019
642019
A short and mean-term automatic forecasting system––application to textile logistics
S Thomassey, M Happiette, JM Castelain
European Journal of Operational Research 161 (1), 275-284, 2005
622005
A design analysis for eco-fashion style using sensory evaluation tools: Consumer perceptions of product appearance
M Wagner, A Curteza, Y Hong, Y Chen, S Thomassey, X Zeng
Journal of Retailing and Consumer Services 51, 253-262, 2019
452019
Modeling of textile manufacturing processes using intelligent techniques: a review
Z He, J Xu, KP Tran, S Thomassey, X Zeng, C Yi
The International Journal of Advanced Manufacturing Technology 116 (1), 39-67, 2021
412021
A new sizing system based on 3D shape descriptor for morphology clustering
M Hamad, S Thomassey, P Bruniaux
Computers & Industrial Engineering 113, 683-692, 2017
332017
Optimization of garment sizing and cutting order planning in the context of mass customization
Y Xu, S Thomassey, X Zeng
The international journal of advanced manufacturing technology 106 (7), 3485 …, 2020
322020
Forecasting new apparel sales using deep learning and nonlinear neural network regression
C Giri, S Thomassey, J Balkow, X Zeng
2019 International Conference on Engineering, Science, and Industrial …, 2019
282019
Customer analytics in fashion retail industry
C Giri, S Thomassey, X Zeng
Functional textiles and clothing, 349-361, 2019
282019
AI for apparel manufacturing in big data era: a focus on cutting and sewing
Y Xu, S Thomassey, X Zeng
Artificial intelligence for fashion industry in the big data era, 125-151, 2018
272018
Modeling color fading ozonation of reactive-dyed cotton using the Extreme Learning Machine, Support Vector Regression and Random Forest
Z He, KP Tran, S Thomassey, X Zeng, J Xu, Y Changhai
Textile Research Journal 90 (7-8), 896-908, 2020
252020
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20