Interpolation lattices for hyperbolic cross trigonometric polynomials L Kämmerer, S Kunis, D Potts Journal of Complexity 28 (1), 76-92, 2012 | 88 | 2012 |
Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling L Kämmerer, D Potts, T Volkmer Journal of Complexity 31 (4), 543-576, 2015 | 85 | 2015 |
On the stability of the hyperbolic cross discrete Fourier transform L Kämmerer, S Kunis Numerische Mathematik 117, 581-600, 2011 | 70 | 2011 |
Worst-case recovery guarantees for least squares approximation using random samples L Kämmerer, T Ullrich, T Volkmer Constructive Approximation 54 (2), 295-352, 2021 | 62 | 2021 |
Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness G Byrenheid, L Kämmerer, T Ullrich, T Volkmer Numerische Mathematik 136, 993-1034, 2017 | 48 | 2017 |
Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices L Kämmerer Approximation Theory XIV: San Antonio 2013, 255-271, 2014 | 40 | 2014 |
Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices L Kämmerer SIAM Journal on Numerical Analysis 51 (5), 2773-2796, 2013 | 40 | 2013 |
High-dimensional sparse FFT based on sampling along multiple rank-1 lattices L Kämmerer, D Potts, T Volkmer Applied and Computational Harmonic Analysis 51, 225-257, 2021 | 34 | 2021 |
Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polynomials L Kämmerer Journal of Fourier Analysis and Applications 24, 17-44, 2018 | 32 | 2018 |
High dimensional fast fourier transform based on rank-1 lattice sampling L Kämmerer Dissertation, Chemnitz, Technische Universität Chemnitz, 2014, 2015 | 32 | 2015 |
Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform L Kämmerer Applied and Computational Harmonic Analysis 47 (3), 702-729, 2019 | 26 | 2019 |
Reconstructing multivariate trigonometric polynomials by sampling along generated sets L Kämmerer Monte Carlo and Quasi-Monte Carlo Methods 2012, 439-454, 2013 | 25 | 2013 |
Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices L Kämmerer, T Volkmer Journal of Approximation Theory 246, 1-27, 2019 | 23 | 2019 |
Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form L Kämmerer, D Potts, T Volkmer Journal of Complexity 31 (3), 424-456, 2015 | 19 | 2015 |
On the reconstruction of functions from values at subsampled quadrature points F Bartel, L Kämmerer, D Potts, T Ullrich Mathematics of Computation 93 (346), 785-809, 2024 | 10 | 2024 |
A deterministic algorithm for constructing multiple rank-1 lattices of near-optimal size C Gross, MA Iwen, L Kämmerer, T Volkmer Advances in Computational Mathematics 47 (6), 86, 2021 | 8 | 2021 |
Computational methods for the Fourier analysis of sparse high-dimensional functions L Kämmerer, S Kunis, I Melzer, D Potts, T Volkmer Extraction of Quantifiable Information from Complex Systems, 347-363, 2014 | 8 | 2014 |
A sample efficient sparse FFT for arbitrary frequency candidate sets in high dimensions L Kämmerer, F Krahmer, T Volkmer Numerical Algorithms, 1-42, 2022 | 7 | 2022 |
NHCFFT, Matlab toolbox for the nonequispaced hyperbolic cross FFT M Döhler, L Kämmerer, S Kunis, D Potts | 7 | 2009 |
The uniform sparse FFT with application to PDEs with random coefficients L Kämmerer, D Potts, F Taubert Sampling Theory, Signal Processing, and Data Analysis 20 (2), 19, 2022 | 5 | 2022 |