Repaint: Inpainting using denoising diffusion probabilistic models A Lugmayr, M Danelljan, A Romero, F Yu, R Timofte, L Van Gool Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 1608 | 2022 |
SRFlow: Learning the Super-Resolution Space with Normalizing Flow A Lugmayr, M Danelljan, L Van Gool, R Timofte European conference on computer vision, 2020 | 423 | 2020 |
Ntire 2020 challenge on real-world image super-resolution: Methods and results A Lugmayr, M Danelljan, R Timofte CVPRW, 2020 | 207 | 2020 |
Unsupervised learning for real-world super-resolution A Lugmayr, M Danelljan, R Timofte CVF International Conference on Computer Vision Workshop (ICCVW), 3408-3416, 2019 | 203 | 2019 |
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling J Liang, A Lugmayr, K Zhang, M Danelljan, L Van Gool, R Timofte | 123* | |
Aim 2019 challenge on real-world image super-resolution: Methods and results A Lugmayr, M Danelljan, R Timofte, M Fritsche, S Gu, K Purohit, ... CVF International Conference on Computer Vision Workshop (ICCVW), 3575-3583, 2019 | 112 | 2019 |
Div8k: Diverse 8k resolution image dataset S Gu, A Lugmayr, M Danelljan, M Fritsche, J Lamour, R Timofte CVPRW, 2019 | 86 | 2019 |
NTIRE 2021 learning the super-resolution space challenge A Lugmayr, M Danelljan, R Timofte Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 58 | 2021 |
Deflow: Learning complex image degradations from unpaired data with conditional flows V Wolf, A Lugmayr, M Danelljan, L Van Gool, R Timofte Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 52 | 2021 |
NTIRE 2022 challenge on learning the super-resolution space A Lugmayr, M Danelljan, R Timofte, K Kim, Y Kim, J Lee, Z Li, J Pan, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 28 | 2022 |
Unsupervised learning for real-world super-resolution. In 2019 IEEE A Lugmayr, M Danelljan, R Timofte CVF International Conference on Computer Vision Workshop (ICCVW), 3408-3416, 0 | 20 | |
Normalizing flow as a flexible fidelity objective for photo-realistic super-resolution A Lugmayr, M Danelljan, F Yu, L Van Gool, R Timofte Proceedings of the IEEE/CVF winter conference on applications of computer …, 2022 | 16 | 2022 |
Inpainting using denoising diffusion probabilistic models A Lugmayr, M Danelljan, A Romero, F Yu, R Timofte, LR Van Gool Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 0 | 16 | |
Fashion-vdm: Video diffusion model for virtual try-on J Karras, Y Li, N Liu, L Zhu, I Yoo, A Lugmayr, C Lee, ... SIGGRAPH Asia 2024 Conference Papers, 1-11, 2024 | 2 | 2024 |
CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image W Roh, H Jung, JW Kim, S Lee, I Yoo, A Lugmayr, S Chi, K Ramani, S Kim arXiv preprint arXiv:2412.12906, 2024 | | 2024 |
ReBotNet: Fast Real-time Video Enhancement JMJ Valanarasu, R Garg, A Toor, X Tong, W Xi, A Lugmayr, VM Patel, ... arXiv preprint arXiv:2303.13504, 2023 | | 2023 |
Generative Image Enhancement A Lugmayr ETH Zurich, 2022 | | 2022 |