Segui
Gunnar Behrens
Gunnar Behrens
PostDoc, University of Bremen, IUP / German Aerospace Center, IPA
Email verificata su dlr.de
Titolo
Citata da
Citata da
Anno
Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
G Behrens, T Beucler, P Gentine, F Iglesias‐Suarez, M Pritchard, V Eyring
Journal of Advances in Modeling Earth Systems 14 (8), e2022MS003130, 2022
282022
ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation
S Yu, W Hannah, L Peng, J Lin, MA Bhouri, R Gupta, B Lütjens, JC Will, ...
Advances in Neural Information Processing Systems 36, 22070-22084, 2023
252023
ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
S Yu, WM Hannah, L Peng, MA Bhouri, R Gupta, J Lin, B Lütjens, JC Will, ...
NeurIPS, 2023
132023
Improving Atmospheric Processes in Earth System Models with Deep Learning Ensembles and Stochastic Parameterizations
G Behrens, T Beucler, F Iglesias-Suarez, S Yu, P Gentine, M Pritchard, ...
arXiv preprint arXiv:2402.03079, 2024
62024
Understanding and Modelling Convection with Machine Learning
G Behrens
Staats-und Universitätsbibliothek Bremen, 2024
2024
ClimSim-Online: A Large Multi-scale Dataset and Framework for Hybrid ML-physics Climate Emulation
S Akshay, S Yu, W Hannah, L Peng, J Lin, MA Bhouri, G Ritwik, B Lütjens, ...
2024
Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations
G Behrens, T Beucler, F Iglesias-Suarez, S Yu, P Gentine, M Pritchard, ...
2024
Physics to machine learning, and machine learning back to physics
P Gentine, S Shamekh, A Anderson-Connolly, T Beucler, V Eyring, ...
AGU Fall Meeting Abstracts 2022, NG15A-05, 2022
2022
Non-Linear Dimensionality Reduction with a Variational Autoencoder Decoder to Understand Convective Processes in Climate Models
G Behrens, T Beucler, P Gentine, F Iglesias-Suarez, M Pritchard, V Eyring
arXiv e-prints, arXiv: 2204.08708, 2022
2022
Non-Linear Dimensionality Reduction With a Variational Encoder Decoder (VED) to Understand Convective Processes in Climate Models
G Behrens, T Beucler, P Gentine, F Iglesias-Suarez, M Pritchard, V Eyring
2022
Machine learning-based parametrizations for the ICON model
F Iglesias-Suarez, A Grundner, G Behrens, T Beucler, P Gentine, G Marco, ...
AGU Fall Meeting Abstracts 2021, A14C-04, 2021
2021
Deep Learning based cloud parametrization for the Community Atmosphere Model
G Behrens, V Eyring, P Gentine, MS Pritchard, T Beucler, S Rasp
EGU2020, 2020
2020
Machine learning based cloud parametrizations and causal discovery for climate models
V Eyring, P Gentine, G Behrens, MS Pritchard, S Rasp, J Runge
AGU Fall Meeting Abstracts 2019, U34B-06, 2019
2019
Seasonal predictability in the MPI-ESM-LR using Modini initialization
G Behrens
Christian-Albrechts-Universität Kiel, 2018
2018
ClimSim-Online: A Large Multi-scale Dataset and Framework for Hybrid ML-physics Climate Emulation
A Subramaniam, S Yu, Z Hu, WM Hannah, L Peng, J Lin, MA Bhouri, ...
AGU24, 0
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–15